Step |
Hyp |
Ref |
Expression |
1 |
|
nfa2 |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) |
2 |
|
hbnt |
⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) |
3 |
2
|
alimi |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑦 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) |
4 |
|
bj-hbalt |
⊢ ( ∀ 𝑦 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) → ( ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) ) |
5 |
3 4
|
syl |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) ) |
6 |
1 5
|
alrimi |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ( ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) ) |
7 |
|
hbnt |
⊢ ( ∀ 𝑥 ( ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) → ( ¬ ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ) ) |
8 |
6 7
|
syl |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ¬ ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ) ) |
9 |
|
df-ex |
⊢ ( ∃ 𝑦 𝜑 ↔ ¬ ∀ 𝑦 ¬ 𝜑 ) |
10 |
9
|
bicomi |
⊢ ( ¬ ∀ 𝑦 ¬ 𝜑 ↔ ∃ 𝑦 𝜑 ) |
11 |
10
|
albii |
⊢ ( ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ↔ ∀ 𝑥 ∃ 𝑦 𝜑 ) |
12 |
8 10 11
|
3imtr3g |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ) |