Metamath Proof Explorer


Theorem bj-modalb

Description: A short form of the axiom B of modal logic using only primitive symbols ( -> , -. , A. ). (Contributed by BJ, 4-Apr-2021) (Proof modification is discouraged.)

Ref Expression
Assertion bj-modalb ( ¬ 𝜑 → ∀ 𝑥 ¬ ∀ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 axc7 ( ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜑𝜑 )
2 1 con1i ( ¬ 𝜑 → ∀ 𝑥 ¬ ∀ 𝑥 𝜑 )