Metamath Proof Explorer


Theorem bj-nexdh2

Description: Uncurried (imported) form of bj-nexdh . (Contributed by BJ, 6-May-2019)

Ref Expression
Assertion bj-nexdh2 ( ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ( 𝜒 → ∀ 𝑥 𝜑 ) ) → ( 𝜒 → ¬ ∃ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 bj-nexdh ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) → ( ( 𝜒 → ∀ 𝑥 𝜑 ) → ( 𝜒 → ¬ ∃ 𝑥 𝜓 ) ) )
2 1 imp ( ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ( 𝜒 → ∀ 𝑥 𝜑 ) ) → ( 𝜒 → ¬ ∃ 𝑥 𝜓 ) )