Description: Closed form of nexd . (Contributed by BJ, 20-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-nexdt | ⊢ ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) → ( 𝜑 → ¬ ∃ 𝑥 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5r | ⊢ ( Ⅎ 𝑥 𝜑 → ( 𝜑 → ∀ 𝑥 𝜑 ) ) | |
2 | bj-nexdh | ⊢ ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) → ( ( 𝜑 → ∀ 𝑥 𝜑 ) → ( 𝜑 → ¬ ∃ 𝑥 𝜓 ) ) ) | |
3 | 1 2 | syl5com | ⊢ ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) → ( 𝜑 → ¬ ∃ 𝑥 𝜓 ) ) ) |