Metamath Proof Explorer


Theorem bj-nfalt

Description: Closed form of nfal . (Contributed by BJ, 2-May-2019)

Ref Expression
Assertion bj-nfalt ( ∀ 𝑥𝑦 𝜑 → Ⅎ 𝑦𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 bj-hbalt ( ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) → ( ∀ 𝑥 𝜑 → ∀ 𝑦𝑥 𝜑 ) )
2 1 alimi ( ∀ 𝑦𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) → ∀ 𝑦 ( ∀ 𝑥 𝜑 → ∀ 𝑦𝑥 𝜑 ) )
3 2 alcoms ( ∀ 𝑥𝑦 ( 𝜑 → ∀ 𝑦 𝜑 ) → ∀ 𝑦 ( ∀ 𝑥 𝜑 → ∀ 𝑦𝑥 𝜑 ) )
4 nf5 ( Ⅎ 𝑦 𝜑 ↔ ∀ 𝑦 ( 𝜑 → ∀ 𝑦 𝜑 ) )
5 4 albii ( ∀ 𝑥𝑦 𝜑 ↔ ∀ 𝑥𝑦 ( 𝜑 → ∀ 𝑦 𝜑 ) )
6 nf5 ( Ⅎ 𝑦𝑥 𝜑 ↔ ∀ 𝑦 ( ∀ 𝑥 𝜑 → ∀ 𝑦𝑥 𝜑 ) )
7 3 5 6 3imtr4i ( ∀ 𝑥𝑦 𝜑 → Ⅎ 𝑦𝑥 𝜑 )