Description: Closed form of nfal . (Contributed by BJ, 2-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-nfalt | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 ∀ 𝑥 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-hbalt | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) → ( ∀ 𝑥 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) ) | |
2 | 1 | alimi | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) → ∀ 𝑦 ( ∀ 𝑥 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) ) |
3 | 2 | alcoms | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑦 𝜑 ) → ∀ 𝑦 ( ∀ 𝑥 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) ) |
4 | nf5 | ⊢ ( Ⅎ 𝑦 𝜑 ↔ ∀ 𝑦 ( 𝜑 → ∀ 𝑦 𝜑 ) ) | |
5 | 4 | albii | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑦 𝜑 ) ) |
6 | nf5 | ⊢ ( Ⅎ 𝑦 ∀ 𝑥 𝜑 ↔ ∀ 𝑦 ( ∀ 𝑥 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) ) | |
7 | 3 5 6 | 3imtr4i | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 ∀ 𝑥 𝜑 ) |