Metamath Proof Explorer


Theorem bj-nnfbid

Description: Nonfreeness in both sides implies nonfreeness in the biconditional, deduction form. (Contributed by BJ, 2-Dec-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-nnfbid.1 ( 𝜑 → Ⅎ' 𝑥 𝜓 )
bj-nnfbid.2 ( 𝜑 → Ⅎ' 𝑥 𝜒 )
Assertion bj-nnfbid ( 𝜑 → Ⅎ' 𝑥 ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 bj-nnfbid.1 ( 𝜑 → Ⅎ' 𝑥 𝜓 )
2 bj-nnfbid.2 ( 𝜑 → Ⅎ' 𝑥 𝜒 )
3 bj-nnfim ( ( Ⅎ' 𝑥 𝜓 ∧ Ⅎ' 𝑥 𝜒 ) → Ⅎ' 𝑥 ( 𝜓𝜒 ) )
4 1 2 3 syl2anc ( 𝜑 → Ⅎ' 𝑥 ( 𝜓𝜒 ) )
5 bj-nnfim ( ( Ⅎ' 𝑥 𝜒 ∧ Ⅎ' 𝑥 𝜓 ) → Ⅎ' 𝑥 ( 𝜒𝜓 ) )
6 2 1 5 syl2anc ( 𝜑 → Ⅎ' 𝑥 ( 𝜒𝜓 ) )
7 4 6 bj-nnfand ( 𝜑 → Ⅎ' 𝑥 ( ( 𝜓𝜒 ) ∧ ( 𝜒𝜓 ) ) )
8 dfbi2 ( ( 𝜓𝜒 ) ↔ ( ( 𝜓𝜒 ) ∧ ( 𝜒𝜓 ) ) )
9 8 bj-nnfbii ( Ⅎ' 𝑥 ( 𝜓𝜒 ) ↔ Ⅎ' 𝑥 ( ( 𝜓𝜒 ) ∧ ( 𝜒𝜓 ) ) )
10 7 9 sylibr ( 𝜑 → Ⅎ' 𝑥 ( 𝜓𝜒 ) )