Metamath Proof Explorer


Theorem bj-nnfea

Description: Nonfreeness implies the equivalent of ax5ea . (Contributed by BJ, 28-Jul-2023)

Ref Expression
Assertion bj-nnfea ( Ⅎ' 𝑥 𝜑 → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 bj-nnfe ( Ⅎ' 𝑥 𝜑 → ( ∃ 𝑥 𝜑𝜑 ) )
2 bj-nnfa ( Ⅎ' 𝑥 𝜑 → ( 𝜑 → ∀ 𝑥 𝜑 ) )
3 1 2 syld ( Ⅎ' 𝑥 𝜑 → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) )