Metamath Proof Explorer


Theorem bj-nnfeai

Description: Nonfreeness implies the equivalent of ax5ea , inference form. (Contributed by BJ, 22-Sep-2024)

Ref Expression
Hypothesis bj-nnfeai.1 Ⅎ' 𝑥 𝜑
Assertion bj-nnfeai ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 bj-nnfeai.1 Ⅎ' 𝑥 𝜑
2 bj-nnfea ( Ⅎ' 𝑥 𝜑 → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) )
3 1 2 ax-mp ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 )