Metamath Proof Explorer


Theorem bj-nnflemee

Description: One of four lemmas for nonfreeness: antecedent and consequent both expressed using existential quantifier. (Contributed by BJ, 12-Aug-2023) (Proof modification is discouraged.)

Ref Expression
Assertion bj-nnflemee ( ∀ 𝑥 ( ∃ 𝑦 𝜑𝜑 ) → ( ∃ 𝑦𝑥 𝜑 → ∃ 𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 excom ( ∃ 𝑦𝑥 𝜑 ↔ ∃ 𝑥𝑦 𝜑 )
2 exim ( ∀ 𝑥 ( ∃ 𝑦 𝜑𝜑 ) → ( ∃ 𝑥𝑦 𝜑 → ∃ 𝑥 𝜑 ) )
3 1 2 syl5bi ( ∀ 𝑥 ( ∃ 𝑦 𝜑𝜑 ) → ( ∃ 𝑦𝑥 𝜑 → ∃ 𝑥 𝜑 ) )