Metamath Proof Explorer


Theorem bj-nnford

Description: Nonfreeness in both disjuncts implies nonfreeness in the disjunction, deduction form. See comments for bj-nnfor and bj-nnfand . (Contributed by BJ, 2-Dec-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-nnford.1 ( 𝜑 → Ⅎ' 𝑥 𝜓 )
bj-nnford.2 ( 𝜑 → Ⅎ' 𝑥 𝜒 )
Assertion bj-nnford ( 𝜑 → Ⅎ' 𝑥 ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 bj-nnford.1 ( 𝜑 → Ⅎ' 𝑥 𝜓 )
2 bj-nnford.2 ( 𝜑 → Ⅎ' 𝑥 𝜒 )
3 19.43 ( ∃ 𝑥 ( 𝜓𝜒 ) ↔ ( ∃ 𝑥 𝜓 ∨ ∃ 𝑥 𝜒 ) )
4 1 bj-nnfed ( 𝜑 → ( ∃ 𝑥 𝜓𝜓 ) )
5 2 bj-nnfed ( 𝜑 → ( ∃ 𝑥 𝜒𝜒 ) )
6 4 5 orim12d ( 𝜑 → ( ( ∃ 𝑥 𝜓 ∨ ∃ 𝑥 𝜒 ) → ( 𝜓𝜒 ) ) )
7 3 6 syl5bi ( 𝜑 → ( ∃ 𝑥 ( 𝜓𝜒 ) → ( 𝜓𝜒 ) ) )
8 1 bj-nnfad ( 𝜑 → ( 𝜓 → ∀ 𝑥 𝜓 ) )
9 2 bj-nnfad ( 𝜑 → ( 𝜒 → ∀ 𝑥 𝜒 ) )
10 8 9 orim12d ( 𝜑 → ( ( 𝜓𝜒 ) → ( ∀ 𝑥 𝜓 ∨ ∀ 𝑥 𝜒 ) ) )
11 19.33 ( ( ∀ 𝑥 𝜓 ∨ ∀ 𝑥 𝜒 ) → ∀ 𝑥 ( 𝜓𝜒 ) )
12 10 11 syl6 ( 𝜑 → ( ( 𝜓𝜒 ) → ∀ 𝑥 ( 𝜓𝜒 ) ) )
13 df-bj-nnf ( Ⅎ' 𝑥 ( 𝜓𝜒 ) ↔ ( ( ∃ 𝑥 ( 𝜓𝜒 ) → ( 𝜓𝜒 ) ) ∧ ( ( 𝜓𝜒 ) → ∀ 𝑥 ( 𝜓𝜒 ) ) ) )
14 7 12 13 sylanbrc ( 𝜑 → Ⅎ' 𝑥 ( 𝜓𝜒 ) )