Step |
Hyp |
Ref |
Expression |
1 |
|
bj-nnford.1 |
⊢ ( 𝜑 → Ⅎ' 𝑥 𝜓 ) |
2 |
|
bj-nnford.2 |
⊢ ( 𝜑 → Ⅎ' 𝑥 𝜒 ) |
3 |
|
19.43 |
⊢ ( ∃ 𝑥 ( 𝜓 ∨ 𝜒 ) ↔ ( ∃ 𝑥 𝜓 ∨ ∃ 𝑥 𝜒 ) ) |
4 |
1
|
bj-nnfed |
⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 → 𝜓 ) ) |
5 |
2
|
bj-nnfed |
⊢ ( 𝜑 → ( ∃ 𝑥 𝜒 → 𝜒 ) ) |
6 |
4 5
|
orim12d |
⊢ ( 𝜑 → ( ( ∃ 𝑥 𝜓 ∨ ∃ 𝑥 𝜒 ) → ( 𝜓 ∨ 𝜒 ) ) ) |
7 |
3 6
|
syl5bi |
⊢ ( 𝜑 → ( ∃ 𝑥 ( 𝜓 ∨ 𝜒 ) → ( 𝜓 ∨ 𝜒 ) ) ) |
8 |
1
|
bj-nnfad |
⊢ ( 𝜑 → ( 𝜓 → ∀ 𝑥 𝜓 ) ) |
9 |
2
|
bj-nnfad |
⊢ ( 𝜑 → ( 𝜒 → ∀ 𝑥 𝜒 ) ) |
10 |
8 9
|
orim12d |
⊢ ( 𝜑 → ( ( 𝜓 ∨ 𝜒 ) → ( ∀ 𝑥 𝜓 ∨ ∀ 𝑥 𝜒 ) ) ) |
11 |
|
19.33 |
⊢ ( ( ∀ 𝑥 𝜓 ∨ ∀ 𝑥 𝜒 ) → ∀ 𝑥 ( 𝜓 ∨ 𝜒 ) ) |
12 |
10 11
|
syl6 |
⊢ ( 𝜑 → ( ( 𝜓 ∨ 𝜒 ) → ∀ 𝑥 ( 𝜓 ∨ 𝜒 ) ) ) |
13 |
|
df-bj-nnf |
⊢ ( Ⅎ' 𝑥 ( 𝜓 ∨ 𝜒 ) ↔ ( ( ∃ 𝑥 ( 𝜓 ∨ 𝜒 ) → ( 𝜓 ∨ 𝜒 ) ) ∧ ( ( 𝜓 ∨ 𝜒 ) → ∀ 𝑥 ( 𝜓 ∨ 𝜒 ) ) ) ) |
14 |
7 12 13
|
sylanbrc |
⊢ ( 𝜑 → Ⅎ' 𝑥 ( 𝜓 ∨ 𝜒 ) ) |