Metamath Proof Explorer


Theorem bj-nnfv

Description: A non-occurring variable is nonfree in a formula. (Contributed by BJ, 28-Jul-2023)

Ref Expression
Assertion bj-nnfv Ⅎ' 𝑥 𝜑

Proof

Step Hyp Ref Expression
1 ax5e ( ∃ 𝑥 𝜑𝜑 )
2 ax-5 ( 𝜑 → ∀ 𝑥 𝜑 )
3 df-bj-nnf ( Ⅎ' 𝑥 𝜑 ↔ ( ( ∃ 𝑥 𝜑𝜑 ) ∧ ( 𝜑 → ∀ 𝑥 𝜑 ) ) )
4 1 2 3 mpbir2an Ⅎ' 𝑥 𝜑