Metamath Proof Explorer


Theorem bj-pm11.53a

Description: A variant of pm11.53v . One can similarly prove a variant with DV ( y , ph ) and A. y F// x ps instead of DV ( x , ps ) and A. x F// y ph . (Contributed by BJ, 7-Oct-2024)

Ref Expression
Assertion bj-pm11.53a ( ∀ 𝑥 Ⅎ' 𝑦 𝜑 → ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 bj-nnfv Ⅎ' 𝑥𝑦 𝜓
2 bj-pm11.53vw ( ( ∀ 𝑥 Ⅎ' 𝑦 𝜑 ∧ Ⅎ' 𝑥𝑦 𝜓 ) → ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) )
3 1 2 mpan2 ( ∀ 𝑥 Ⅎ' 𝑦 𝜑 → ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) )