Metamath Proof Explorer


Theorem bj-pm11.53vw

Description: Version of pm11.53v with nonfreeness antecedents. One can also prove the theorem with antecedent ( F// y A. x ph /\ A. y F// x ps ) . (Contributed by BJ, 7-Oct-2024)

Ref Expression
Assertion bj-pm11.53vw ( ( ∀ 𝑥 Ⅎ' 𝑦 𝜑 ∧ Ⅎ' 𝑥𝑦 𝜓 ) → ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( ∀ 𝑥 Ⅎ' 𝑦 𝜑 ∧ Ⅎ' 𝑥𝑦 𝜓 ) → ∀ 𝑥 Ⅎ' 𝑦 𝜑 )
2 bj-19.21t ( Ⅎ' 𝑦 𝜑 → ( ∀ 𝑦 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∀ 𝑦 𝜓 ) ) )
3 1 2 sylg ( ( ∀ 𝑥 Ⅎ' 𝑦 𝜑 ∧ Ⅎ' 𝑥𝑦 𝜓 ) → ∀ 𝑥 ( ∀ 𝑦 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∀ 𝑦 𝜓 ) ) )
4 albi ( ∀ 𝑥 ( ∀ 𝑦 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∀ 𝑦 𝜓 ) ) → ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜓 ) ) )
5 3 4 syl ( ( ∀ 𝑥 Ⅎ' 𝑦 𝜑 ∧ Ⅎ' 𝑥𝑦 𝜓 ) → ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜓 ) ) )
6 bj-19.23t ( Ⅎ' 𝑥𝑦 𝜓 → ( ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜓 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) )
7 6 adantl ( ( ∀ 𝑥 Ⅎ' 𝑦 𝜑 ∧ Ⅎ' 𝑥𝑦 𝜓 ) → ( ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜓 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) )
8 5 7 bitrd ( ( ∀ 𝑥 Ⅎ' 𝑦 𝜑 ∧ Ⅎ' 𝑥𝑦 𝜓 ) → ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) )