Metamath Proof Explorer


Theorem bj-sbft

Description: Version of sbft using F// , proved from core axioms. (Contributed by BJ, 19-Nov-2023)

Ref Expression
Assertion bj-sbft ( Ⅎ' 𝑥 𝜑 → ( [ 𝑡 / 𝑥 ] 𝜑𝜑 ) )

Proof

Step Hyp Ref Expression
1 spsbe ( [ 𝑡 / 𝑥 ] 𝜑 → ∃ 𝑥 𝜑 )
2 bj-nnfe ( Ⅎ' 𝑥 𝜑 → ( ∃ 𝑥 𝜑𝜑 ) )
3 1 2 syl5 ( Ⅎ' 𝑥 𝜑 → ( [ 𝑡 / 𝑥 ] 𝜑𝜑 ) )
4 bj-nnfa ( Ⅎ' 𝑥 𝜑 → ( 𝜑 → ∀ 𝑥 𝜑 ) )
5 stdpc4 ( ∀ 𝑥 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 )
6 4 5 syl6 ( Ⅎ' 𝑥 𝜑 → ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) )
7 3 6 impbid ( Ⅎ' 𝑥 𝜑 → ( [ 𝑡 / 𝑥 ] 𝜑𝜑 ) )