Metamath Proof Explorer


Theorem bj-sbievwd

Description: Variant of sbievw . (Contributed by BJ, 7-Oct-2024)

Ref Expression
Hypotheses bj-sbievwd.nf0 ( 𝜑 → ∀ 𝑥 𝜑 )
bj-sbievwd.nf ( 𝜑 → Ⅎ' 𝑥 𝜒 )
bj-sbievwd.is ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
Assertion bj-sbievwd ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 bj-sbievwd.nf0 ( 𝜑 → ∀ 𝑥 𝜑 )
2 bj-sbievwd.nf ( 𝜑 → Ⅎ' 𝑥 𝜒 )
3 bj-sbievwd.is ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
4 sb6 ( [ 𝑦 / 𝑥 ] 𝜓 ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝜓 ) )
5 1 2 3 bj-equsalvwd ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜓 ) ↔ 𝜒 ) )
6 4 5 syl5bb ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓𝜒 ) )