Description: Variant of sbievw . (Contributed by BJ, 7-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-sbievwd.nf0 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
bj-sbievwd.nf | ⊢ ( 𝜑 → Ⅎ' 𝑥 𝜒 ) | ||
bj-sbievwd.is | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | bj-sbievwd | ⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-sbievwd.nf0 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
2 | bj-sbievwd.nf | ⊢ ( 𝜑 → Ⅎ' 𝑥 𝜒 ) | |
3 | bj-sbievwd.is | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
4 | sb6 | ⊢ ( [ 𝑦 / 𝑥 ] 𝜓 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) ) | |
5 | 1 2 3 | bj-equsalvwd | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) ↔ 𝜒 ) ) |
6 | 4 5 | syl5bb | ⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ 𝜒 ) ) |