Description: Version of spimt with a disjoint variable condition, which does not require ax-13 . (Contributed by BJ, 14-Jun-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-spimtv | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) ) → ( ∀ 𝑥 𝜑 → 𝜓 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax6ev | ⊢ ∃ 𝑥 𝑥 = 𝑦 | |
| 2 | exim | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) → ( ∃ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ( 𝜑 → 𝜓 ) ) ) | |
| 3 | 1 2 | mpi | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) → ∃ 𝑥 ( 𝜑 → 𝜓 ) ) | 
| 4 | 19.35 | ⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) | |
| 5 | 3 4 | sylib | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) → ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) | 
| 6 | 19.9t | ⊢ ( Ⅎ 𝑥 𝜓 → ( ∃ 𝑥 𝜓 ↔ 𝜓 ) ) | |
| 7 | 6 | biimpd | ⊢ ( Ⅎ 𝑥 𝜓 → ( ∃ 𝑥 𝜓 → 𝜓 ) ) | 
| 8 | 5 7 | sylan9r | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) ) → ( ∀ 𝑥 𝜑 → 𝜓 ) ) |