Metamath Proof Explorer


Theorem bj-ssbid2

Description: A special case of sbequ2 . (Contributed by BJ, 22-Dec-2020)

Ref Expression
Assertion bj-ssbid2 ( [ 𝑥 / 𝑥 ] 𝜑𝜑 )

Proof

Step Hyp Ref Expression
1 equid 𝑥 = 𝑥
2 sbequ2 ( 𝑥 = 𝑥 → ( [ 𝑥 / 𝑥 ] 𝜑𝜑 ) )
3 1 2 ax-mp ( [ 𝑥 / 𝑥 ] 𝜑𝜑 )