Metamath Proof Explorer


Theorem bj-substw

Description: Weak form of the LHS of bj-substax12 proved from the core axiom schemes. Compare ax12w . (Contributed by BJ, 26-May-2024) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-substw.is ( 𝑥 = 𝑡 → ( 𝜑𝜓 ) )
Assertion bj-substw ( ∃ 𝑥 ( 𝑥 = 𝑡𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑡𝜑 ) )

Proof

Step Hyp Ref Expression
1 bj-substw.is ( 𝑥 = 𝑡 → ( 𝜑𝜓 ) )
2 1 pm5.32i ( ( 𝑥 = 𝑡𝜑 ) ↔ ( 𝑥 = 𝑡𝜓 ) )
3 2 exbii ( ∃ 𝑥 ( 𝑥 = 𝑡𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝑡𝜓 ) )
4 19.41v ( ∃ 𝑥 ( 𝑥 = 𝑡𝜓 ) ↔ ( ∃ 𝑥 𝑥 = 𝑡𝜓 ) )
5 3 4 bitri ( ∃ 𝑥 ( 𝑥 = 𝑡𝜑 ) ↔ ( ∃ 𝑥 𝑥 = 𝑡𝜓 ) )
6 1 biimprcd ( 𝜓 → ( 𝑥 = 𝑡𝜑 ) )
7 6 alrimiv ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝑡𝜑 ) )
8 5 7 simplbiim ( ∃ 𝑥 ( 𝑥 = 𝑡𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑡𝜑 ) )