Metamath Proof Explorer


Theorem bj-sylge

Description: Dual statement of sylg (the final "e" in the label stands for "existential (version of sylg )". Variant of exlimih . (Contributed by BJ, 25-Dec-2023)

Ref Expression
Hypotheses bj-sylge.nf ( ∃ 𝑥 𝜑𝜓 )
bj-sylge.maj ( 𝜒𝜑 )
Assertion bj-sylge ( ∃ 𝑥 𝜒𝜓 )

Proof

Step Hyp Ref Expression
1 bj-sylge.nf ( ∃ 𝑥 𝜑𝜓 )
2 bj-sylge.maj ( 𝜒𝜑 )
3 2 eximi ( ∃ 𝑥 𝜒 → ∃ 𝑥 𝜑 )
4 3 1 syl ( ∃ 𝑥 𝜒𝜓 )