Metamath Proof Explorer


Theorem bj-sylget2

Description: Uncurried (imported) form of bj-sylget . (Contributed by BJ, 2-May-2019)

Ref Expression
Assertion bj-sylget2 ( ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ( ∃ 𝑥 𝜓𝜒 ) ) → ( ∃ 𝑥 𝜑𝜒 ) )

Proof

Step Hyp Ref Expression
1 bj-sylget ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ( ∃ 𝑥 𝜓𝜒 ) → ( ∃ 𝑥 𝜑𝜒 ) ) )
2 1 imp ( ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ( ∃ 𝑥 𝜓𝜒 ) ) → ( ∃ 𝑥 𝜑𝜒 ) )