Metamath Proof Explorer


Theorem bj-wnf1

Description: When ph is substituted for ps , this is the first half of nonfreness ( . -> A. ) of the weak form of nonfreeness ( E. -> A. ) . (Contributed by BJ, 9-Dec-2023)

Ref Expression
Assertion bj-wnf1 ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 bj-modal4e ( ∃ 𝑥𝑥 𝜑 → ∃ 𝑥 𝜑 )
2 hba1 ( ∀ 𝑥 𝜓 → ∀ 𝑥𝑥 𝜓 )
3 1 2 imim12i ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ( ∃ 𝑥𝑥 𝜑 → ∀ 𝑥𝑥 𝜓 ) )
4 19.38 ( ( ∃ 𝑥𝑥 𝜑 → ∀ 𝑥𝑥 𝜓 ) → ∀ 𝑥 ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) )
5 3 4 syl ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) )