Metamath Proof Explorer


Theorem bj-wnf2

Description: When ph is substituted for ps , this is the first half of nonfreness ( . -> A. ) of the weak form of nonfreeness ( E. -> A. ) . (Contributed by BJ, 9-Dec-2023)

Ref Expression
Assertion bj-wnf2 ( ∃ 𝑥 ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 hbe1 ( ∃ 𝑥 𝜑 → ∀ 𝑥𝑥 𝜑 )
2 bj-eximcom ( ∃ 𝑥 ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ( ∀ 𝑥𝑥 𝜑 → ∃ 𝑥𝑥 𝜓 ) )
3 hbe1a ( ∃ 𝑥𝑥 𝜓 → ∀ 𝑥 𝜓 )
4 1 2 3 syl56 ( ∃ 𝑥 ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) )