Metamath Proof Explorer


Theorem bj-wnfnf

Description: When ph is substituted for ps , this statement expresses nonfreeness in the weak form of nonfreeness ( E. -> A. ) . Note that this could also be proved from bj-nnfim , bj-nnfe1 and bj-nnfa1 . (Contributed by BJ, 9-Dec-2023)

Ref Expression
Assertion bj-wnfnf Ⅎ' 𝑥 ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 bj-wnf2 ( ∃ 𝑥 ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) )
2 bj-wnf1 ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) )
3 df-bj-nnf ( Ⅎ' 𝑥 ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ↔ ( ( ∃ 𝑥 ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) ∧ ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) ) )
4 1 2 3 mpbir2an Ⅎ' 𝑥 ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 )