Metamath Proof Explorer
Description: A ball contains its center. (Contributed by NM, 2-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)
|
|
Ref |
Expression |
|
Assertion |
blcntr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rpxr |
⊢ ( 𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ* ) |
2 |
|
rpgt0 |
⊢ ( 𝑅 ∈ ℝ+ → 0 < 𝑅 ) |
3 |
1 2
|
jca |
⊢ ( 𝑅 ∈ ℝ+ → ( 𝑅 ∈ ℝ* ∧ 0 < 𝑅 ) ) |
4 |
|
xblcntr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ ( 𝑅 ∈ ℝ* ∧ 0 < 𝑅 ) ) → 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) |
5 |
3 4
|
syl3an3 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) |