Description: A ball belongs to the set of balls of a metric space. (Contributed by NM, 2-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | blelrn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ ran ( ball ‘ 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blf | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ball ‘ 𝐷 ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 ) | |
2 | 1 | ffnd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ball ‘ 𝐷 ) Fn ( 𝑋 × ℝ* ) ) |
3 | fnovrn | ⊢ ( ( ( ball ‘ 𝐷 ) Fn ( 𝑋 × ℝ* ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ ran ( ball ‘ 𝐷 ) ) | |
4 | 2 3 | syl3an1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ ran ( ball ‘ 𝐷 ) ) |