Database BASIC TOPOLOGY Metric spaces Metric space balls blelrnps  
				
		 
		
			
		 
		Description:   A ball belongs to the set of balls of a metric space.  (Contributed by NM , 2-Sep-2006)   (Revised by Mario Carneiro , 12-Nov-2013)   (Revised by Thierry Arnoux , 11-Mar-2018) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					blelrnps ⊢   ( ( 𝐷   ∈  ( PsMet ‘ 𝑋  )  ∧  𝑃   ∈  𝑋   ∧  𝑅   ∈  ℝ*  )  →  ( 𝑃  ( ball ‘ 𝐷  ) 𝑅  )  ∈  ran  ( ball ‘ 𝐷  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							blfps ⊢  ( 𝐷   ∈  ( PsMet ‘ 𝑋  )  →  ( ball ‘ 𝐷  ) : ( 𝑋   ×  ℝ*  ) ⟶ 𝒫  𝑋  )  
						
							2 
								1 
							 
							ffnd ⊢  ( 𝐷   ∈  ( PsMet ‘ 𝑋  )  →  ( ball ‘ 𝐷  )  Fn  ( 𝑋   ×  ℝ*  ) )  
						
							3 
								
							 
							fnovrn ⊢  ( ( ( ball ‘ 𝐷  )  Fn  ( 𝑋   ×  ℝ*  )  ∧  𝑃   ∈  𝑋   ∧  𝑅   ∈  ℝ*  )  →  ( 𝑃  ( ball ‘ 𝐷  ) 𝑅  )  ∈  ran  ( ball ‘ 𝐷  ) )  
						
							4 
								2  3 
							 
							syl3an1 ⊢  ( ( 𝐷   ∈  ( PsMet ‘ 𝑋  )  ∧  𝑃   ∈  𝑋   ∧  𝑅   ∈  ℝ*  )  →  ( 𝑃  ( ball ‘ 𝐷  ) 𝑅  )  ∈  ran  ( ball ‘ 𝐷  ) )