Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
2 |
|
simprl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝐵 ∈ ran ( ball ‘ 𝐷 ) ) |
3 |
|
simplr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) |
4 |
3
|
elin1d |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝑃 ∈ 𝐵 ) |
5 |
|
blss |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝑃 ∈ 𝐵 ) → ∃ 𝑦 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ) |
6 |
1 2 4 5
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ∃ 𝑦 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ) |
7 |
|
simprr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) |
8 |
3
|
elin2d |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝑃 ∈ 𝐶 ) |
9 |
|
blss |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝑃 ∈ 𝐶 ) → ∃ 𝑧 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) |
10 |
1 7 8 9
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ∃ 𝑧 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) |
11 |
|
reeanv |
⊢ ( ∃ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) ↔ ( ∃ 𝑦 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ∧ ∃ 𝑧 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) ) |
12 |
|
ss2in |
⊢ ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ∩ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ) ⊆ ( 𝐵 ∩ 𝐶 ) ) |
13 |
|
inss1 |
⊢ ( 𝐵 ∩ 𝐶 ) ⊆ 𝐵 |
14 |
|
blf |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ball ‘ 𝐷 ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 ) |
15 |
|
frn |
⊢ ( ( ball ‘ 𝐷 ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 → ran ( ball ‘ 𝐷 ) ⊆ 𝒫 𝑋 ) |
16 |
1 14 15
|
3syl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ran ( ball ‘ 𝐷 ) ⊆ 𝒫 𝑋 ) |
17 |
16 2
|
sseldd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝐵 ∈ 𝒫 𝑋 ) |
18 |
17
|
elpwid |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝐵 ⊆ 𝑋 ) |
19 |
13 18
|
sstrid |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ( 𝐵 ∩ 𝐶 ) ⊆ 𝑋 ) |
20 |
19 3
|
sseldd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝑃 ∈ 𝑋 ) |
21 |
1 20
|
jca |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ) |
22 |
|
rpxr |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ* ) |
23 |
|
rpxr |
⊢ ( 𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ* ) |
24 |
22 23
|
anim12i |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) → ( 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ) |
25 |
|
blin |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ∩ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ) = ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ) ) |
26 |
21 24 25
|
syl2an |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ∩ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ) = ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ) ) |
27 |
26
|
sseq1d |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ∩ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ) ⊆ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ) ⊆ ( 𝐵 ∩ 𝐶 ) ) ) |
28 |
|
ifcl |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) → if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ∈ ℝ+ ) |
29 |
|
oveq2 |
⊢ ( 𝑥 = if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) = ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ) ) |
30 |
29
|
sseq1d |
⊢ ( 𝑥 = if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ) ⊆ ( 𝐵 ∩ 𝐶 ) ) ) |
31 |
30
|
rspcev |
⊢ ( ( if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ∈ ℝ+ ∧ ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ) ⊆ ( 𝐵 ∩ 𝐶 ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) |
32 |
31
|
ex |
⊢ ( if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ∈ ℝ+ → ( ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ) ⊆ ( 𝐵 ∩ 𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) ) |
33 |
28 32
|
syl |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) → ( ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ) ⊆ ( 𝐵 ∩ 𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) ) |
34 |
33
|
adantl |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦 ≤ 𝑧 , 𝑦 , 𝑧 ) ) ⊆ ( 𝐵 ∩ 𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) ) |
35 |
27 34
|
sylbid |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ∩ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ) ⊆ ( 𝐵 ∩ 𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) ) |
36 |
12 35
|
syl5 |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) ) |
37 |
36
|
rexlimdvva |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ( ∃ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) ) |
38 |
11 37
|
syl5bir |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ( ( ∃ 𝑦 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ∧ ∃ 𝑧 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) ) |
39 |
6 10 38
|
mp2and |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵 ∩ 𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) |