Metamath Proof Explorer


Theorem blin2

Description: Given any two balls and a point in their intersection, there is a ball contained in the intersection with the given center point. (Contributed by Mario Carneiro, 12-Nov-2013)

Ref Expression
Assertion blin2 ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 simpll ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
2 simprl ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝐵 ∈ ran ( ball ‘ 𝐷 ) )
3 simplr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝑃 ∈ ( 𝐵𝐶 ) )
4 3 elin1d ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝑃𝐵 )
5 blss ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝑃𝐵 ) → ∃ 𝑦 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 )
6 1 2 4 5 syl3anc ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ∃ 𝑦 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 )
7 simprr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝐶 ∈ ran ( ball ‘ 𝐷 ) )
8 3 elin2d ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝑃𝐶 )
9 blss ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝑃𝐶 ) → ∃ 𝑧 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 )
10 1 7 8 9 syl3anc ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ∃ 𝑧 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 )
11 reeanv ( ∃ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) ↔ ( ∃ 𝑦 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ∧ ∃ 𝑧 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) )
12 ss2in ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ∩ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ) ⊆ ( 𝐵𝐶 ) )
13 inss1 ( 𝐵𝐶 ) ⊆ 𝐵
14 blf ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ball ‘ 𝐷 ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 )
15 frn ( ( ball ‘ 𝐷 ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 → ran ( ball ‘ 𝐷 ) ⊆ 𝒫 𝑋 )
16 1 14 15 3syl ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ran ( ball ‘ 𝐷 ) ⊆ 𝒫 𝑋 )
17 16 2 sseldd ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝐵 ∈ 𝒫 𝑋 )
18 17 elpwid ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝐵𝑋 )
19 13 18 sstrid ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ( 𝐵𝐶 ) ⊆ 𝑋 )
20 19 3 sseldd ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → 𝑃𝑋 )
21 1 20 jca ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) )
22 rpxr ( 𝑦 ∈ ℝ+𝑦 ∈ ℝ* )
23 rpxr ( 𝑧 ∈ ℝ+𝑧 ∈ ℝ* )
24 22 23 anim12i ( ( 𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ) → ( 𝑦 ∈ ℝ*𝑧 ∈ ℝ* ) )
25 blin ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) ∧ ( 𝑦 ∈ ℝ*𝑧 ∈ ℝ* ) ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ∩ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ) = ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦𝑧 , 𝑦 , 𝑧 ) ) )
26 21 24 25 syl2an ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) ∧ ( 𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ) ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ∩ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ) = ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦𝑧 , 𝑦 , 𝑧 ) ) )
27 26 sseq1d ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) ∧ ( 𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ) ) → ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ∩ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ) ⊆ ( 𝐵𝐶 ) ↔ ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦𝑧 , 𝑦 , 𝑧 ) ) ⊆ ( 𝐵𝐶 ) ) )
28 ifcl ( ( 𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ) → if ( 𝑦𝑧 , 𝑦 , 𝑧 ) ∈ ℝ+ )
29 oveq2 ( 𝑥 = if ( 𝑦𝑧 , 𝑦 , 𝑧 ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) = ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦𝑧 , 𝑦 , 𝑧 ) ) )
30 29 sseq1d ( 𝑥 = if ( 𝑦𝑧 , 𝑦 , 𝑧 ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵𝐶 ) ↔ ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦𝑧 , 𝑦 , 𝑧 ) ) ⊆ ( 𝐵𝐶 ) ) )
31 30 rspcev ( ( if ( 𝑦𝑧 , 𝑦 , 𝑧 ) ∈ ℝ+ ∧ ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦𝑧 , 𝑦 , 𝑧 ) ) ⊆ ( 𝐵𝐶 ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵𝐶 ) )
32 31 ex ( if ( 𝑦𝑧 , 𝑦 , 𝑧 ) ∈ ℝ+ → ( ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦𝑧 , 𝑦 , 𝑧 ) ) ⊆ ( 𝐵𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵𝐶 ) ) )
33 28 32 syl ( ( 𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ) → ( ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦𝑧 , 𝑦 , 𝑧 ) ) ⊆ ( 𝐵𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵𝐶 ) ) )
34 33 adantl ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) ∧ ( 𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ) ) → ( ( 𝑃 ( ball ‘ 𝐷 ) if ( 𝑦𝑧 , 𝑦 , 𝑧 ) ) ⊆ ( 𝐵𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵𝐶 ) ) )
35 27 34 sylbid ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) ∧ ( 𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ) ) → ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ∩ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ) ⊆ ( 𝐵𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵𝐶 ) ) )
36 12 35 syl5 ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) ∧ ( 𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ) ) → ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵𝐶 ) ) )
37 36 rexlimdvva ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ( ∃ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵𝐶 ) ) )
38 11 37 syl5bir ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ( ( ∃ 𝑦 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐵 ∧ ∃ 𝑧 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑧 ) ⊆ 𝐶 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵𝐶 ) ) )
39 6 10 38 mp2and ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ ( 𝐵𝐶 ) ) ∧ ( 𝐵 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝐶 ∈ ran ( ball ‘ 𝐷 ) ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐵𝐶 ) )