Metamath Proof Explorer


Theorem bln0

Description: A ball is not empty. (Contributed by NM, 6-Oct-2007) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Assertion bln0 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑅 ∈ ℝ+ ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 blcntr ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑅 ∈ ℝ+ ) → 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) )
2 1 ne0d ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑅 ∈ ℝ+ ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ≠ ∅ )