Step |
Hyp |
Ref |
Expression |
1 |
|
isblo3i.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
isblo3i.m |
⊢ 𝑀 = ( normCV ‘ 𝑈 ) |
3 |
|
isblo3i.n |
⊢ 𝑁 = ( normCV ‘ 𝑊 ) |
4 |
|
isblo3i.4 |
⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) |
5 |
|
isblo3i.5 |
⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) |
6 |
|
isblo3i.u |
⊢ 𝑈 ∈ NrmCVec |
7 |
|
isblo3i.w |
⊢ 𝑊 ∈ NrmCVec |
8 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) = ( 𝐴 · ( 𝑀 ‘ 𝑦 ) ) ) |
9 |
8
|
breq2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝑀 ‘ 𝑦 ) ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝑀 ‘ 𝑦 ) ) ) ) |
11 |
10
|
rspcev |
⊢ ( ( 𝐴 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝑀 ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) |
12 |
1 2 3 4 5 6 7
|
isblo3i |
⊢ ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) ) |
13 |
12
|
biimpri |
⊢ ( ( 𝑇 ∈ 𝐿 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → 𝑇 ∈ 𝐵 ) |
14 |
11 13
|
sylan2 |
⊢ ( ( 𝑇 ∈ 𝐿 ∧ ( 𝐴 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝑀 ‘ 𝑦 ) ) ) ) → 𝑇 ∈ 𝐵 ) |
15 |
14
|
3impb |
⊢ ( ( 𝑇 ∈ 𝐿 ∧ 𝐴 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝑀 ‘ 𝑦 ) ) ) → 𝑇 ∈ 𝐵 ) |