Step |
Hyp |
Ref |
Expression |
1 |
|
blocn.8 |
⊢ 𝐶 = ( IndMet ‘ 𝑈 ) |
2 |
|
blocn.d |
⊢ 𝐷 = ( IndMet ‘ 𝑊 ) |
3 |
|
blocn.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) |
4 |
|
blocn.k |
⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) |
5 |
|
blocn.5 |
⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) |
6 |
|
blocn.u |
⊢ 𝑈 ∈ NrmCVec |
7 |
|
blocn.w |
⊢ 𝑊 ∈ NrmCVec |
8 |
|
blocn.4 |
⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) |
9 |
|
eleq1 |
⊢ ( 𝑇 = if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) → ( 𝑇 ∈ ( 𝐽 Cn 𝐾 ) ↔ if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
10 |
|
eleq1 |
⊢ ( 𝑇 = if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) → ( 𝑇 ∈ 𝐵 ↔ if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ∈ 𝐵 ) ) |
11 |
9 10
|
bibi12d |
⊢ ( 𝑇 = if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) → ( ( 𝑇 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝑇 ∈ 𝐵 ) ↔ ( if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ∈ ( 𝐽 Cn 𝐾 ) ↔ if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ∈ 𝐵 ) ) ) |
12 |
|
eqid |
⊢ ( 𝑈 0op 𝑊 ) = ( 𝑈 0op 𝑊 ) |
13 |
12 8
|
0lno |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑈 0op 𝑊 ) ∈ 𝐿 ) |
14 |
6 7 13
|
mp2an |
⊢ ( 𝑈 0op 𝑊 ) ∈ 𝐿 |
15 |
14
|
elimel |
⊢ if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ∈ 𝐿 |
16 |
1 2 3 4 8 5 6 7 15
|
blocni |
⊢ ( if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ∈ ( 𝐽 Cn 𝐾 ) ↔ if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ∈ 𝐵 ) |
17 |
11 16
|
dedth |
⊢ ( 𝑇 ∈ 𝐿 → ( 𝑇 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝑇 ∈ 𝐵 ) ) |