Step |
Hyp |
Ref |
Expression |
1 |
|
blocn.8 |
⊢ 𝐶 = ( IndMet ‘ 𝑈 ) |
2 |
|
blocn.d |
⊢ 𝐷 = ( IndMet ‘ 𝑊 ) |
3 |
|
blocn.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) |
4 |
|
blocn.k |
⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) |
5 |
|
blocn.5 |
⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) |
6 |
|
blocn.u |
⊢ 𝑈 ∈ NrmCVec |
7 |
|
blocn.w |
⊢ 𝑊 ∈ NrmCVec |
8 |
|
eqid |
⊢ ( 𝑈 LnOp 𝑊 ) = ( 𝑈 LnOp 𝑊 ) |
9 |
8 5
|
bloln |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ) |
10 |
6 7 9
|
mp3an12 |
⊢ ( 𝑇 ∈ 𝐵 → 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ) |
11 |
1 2 3 4 5 6 7 8
|
blocn |
⊢ ( 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) → ( 𝑇 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝑇 ∈ 𝐵 ) ) |
12 |
11
|
biimprd |
⊢ ( 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) → ( 𝑇 ∈ 𝐵 → 𝑇 ∈ ( 𝐽 Cn 𝐾 ) ) ) |
13 |
10 12
|
mpcom |
⊢ ( 𝑇 ∈ 𝐵 → 𝑇 ∈ ( 𝐽 Cn 𝐾 ) ) |