Description: A bounded operator is an operator. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | blof.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
blof.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
blof.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | ||
Assertion | blof | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → 𝑇 : 𝑋 ⟶ 𝑌 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blof.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
2 | blof.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
3 | blof.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | |
4 | eqid | ⊢ ( 𝑈 LnOp 𝑊 ) = ( 𝑈 LnOp 𝑊 ) | |
5 | 4 3 | bloln | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ) |
6 | 1 2 4 | lnof | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ) → 𝑇 : 𝑋 ⟶ 𝑌 ) |
7 | 5 6 | syld3an3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → 𝑇 : 𝑋 ⟶ 𝑌 ) |