Metamath Proof Explorer


Theorem blof

Description: A bounded operator is an operator. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses blof.1 𝑋 = ( BaseSet ‘ 𝑈 )
blof.2 𝑌 = ( BaseSet ‘ 𝑊 )
blof.5 𝐵 = ( 𝑈 BLnOp 𝑊 )
Assertion blof ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵 ) → 𝑇 : 𝑋𝑌 )

Proof

Step Hyp Ref Expression
1 blof.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 blof.2 𝑌 = ( BaseSet ‘ 𝑊 )
3 blof.5 𝐵 = ( 𝑈 BLnOp 𝑊 )
4 eqid ( 𝑈 LnOp 𝑊 ) = ( 𝑈 LnOp 𝑊 )
5 4 3 bloln ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵 ) → 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) )
6 1 2 4 lnof ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ) → 𝑇 : 𝑋𝑌 )
7 5 6 syld3an3 ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵 ) → 𝑇 : 𝑋𝑌 )