Metamath Proof Explorer


Theorem bloln

Description: A bounded operator is a linear operator. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses bloln.4 𝐿 = ( 𝑈 LnOp 𝑊 )
bloln.5 𝐵 = ( 𝑈 BLnOp 𝑊 )
Assertion bloln ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵 ) → 𝑇𝐿 )

Proof

Step Hyp Ref Expression
1 bloln.4 𝐿 = ( 𝑈 LnOp 𝑊 )
2 bloln.5 𝐵 = ( 𝑈 BLnOp 𝑊 )
3 eqid ( 𝑈 normOpOLD 𝑊 ) = ( 𝑈 normOpOLD 𝑊 )
4 3 1 2 isblo ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇𝐵 ↔ ( 𝑇𝐿 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) < +∞ ) ) )
5 4 simprbda ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑇𝐵 ) → 𝑇𝐿 )
6 5 3impa ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵 ) → 𝑇𝐿 )