Step |
Hyp |
Ref |
Expression |
1 |
|
blometi.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
blometi.2 |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
3 |
|
blometi.8 |
⊢ 𝐶 = ( IndMet ‘ 𝑈 ) |
4 |
|
blometi.d |
⊢ 𝐷 = ( IndMet ‘ 𝑊 ) |
5 |
|
blometi.6 |
⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) |
6 |
|
blometi.7 |
⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) |
7 |
|
blometi.u |
⊢ 𝑈 ∈ NrmCVec |
8 |
|
blometi.w |
⊢ 𝑊 ∈ NrmCVec |
9 |
|
eqid |
⊢ ( −𝑣 ‘ 𝑈 ) = ( −𝑣 ‘ 𝑈 ) |
10 |
1 9
|
nvmcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ∈ 𝑋 ) |
11 |
7 10
|
mp3an1 |
⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ∈ 𝑋 ) |
12 |
|
eqid |
⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) |
13 |
|
eqid |
⊢ ( normCV ‘ 𝑊 ) = ( normCV ‘ 𝑊 ) |
14 |
1 12 13 5 6 7 8
|
nmblolbi |
⊢ ( ( 𝑇 ∈ 𝐵 ∧ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ∈ 𝑋 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) ≤ ( ( 𝑁 ‘ 𝑇 ) · ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) ) |
15 |
11 14
|
sylan2 |
⊢ ( ( 𝑇 ∈ 𝐵 ∧ ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) ≤ ( ( 𝑁 ‘ 𝑇 ) · ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) ) |
16 |
15
|
3impb |
⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) ≤ ( ( 𝑁 ‘ 𝑇 ) · ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) ) |
17 |
1 2 6
|
blof |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → 𝑇 : 𝑋 ⟶ 𝑌 ) |
18 |
7 8 17
|
mp3an12 |
⊢ ( 𝑇 ∈ 𝐵 → 𝑇 : 𝑋 ⟶ 𝑌 ) |
19 |
18
|
ffvelrnda |
⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑃 ) ∈ 𝑌 ) |
20 |
19
|
3adant3 |
⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑃 ) ∈ 𝑌 ) |
21 |
18
|
ffvelrnda |
⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑄 ) ∈ 𝑌 ) |
22 |
21
|
3adant2 |
⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑄 ) ∈ 𝑌 ) |
23 |
|
eqid |
⊢ ( −𝑣 ‘ 𝑊 ) = ( −𝑣 ‘ 𝑊 ) |
24 |
2 23 13 4
|
imsdval |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑃 ) ∈ 𝑌 ∧ ( 𝑇 ‘ 𝑄 ) ∈ 𝑌 ) → ( ( 𝑇 ‘ 𝑃 ) 𝐷 ( 𝑇 ‘ 𝑄 ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑃 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) ) |
25 |
8 24
|
mp3an1 |
⊢ ( ( ( 𝑇 ‘ 𝑃 ) ∈ 𝑌 ∧ ( 𝑇 ‘ 𝑄 ) ∈ 𝑌 ) → ( ( 𝑇 ‘ 𝑃 ) 𝐷 ( 𝑇 ‘ 𝑄 ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑃 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) ) |
26 |
20 22 25
|
syl2anc |
⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑃 ) 𝐷 ( 𝑇 ‘ 𝑄 ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑃 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) ) |
27 |
|
eqid |
⊢ ( 𝑈 LnOp 𝑊 ) = ( 𝑈 LnOp 𝑊 ) |
28 |
27 6
|
bloln |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ) |
29 |
7 8 28
|
mp3an12 |
⊢ ( 𝑇 ∈ 𝐵 → 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ) |
30 |
1 9 23 27
|
lnosub |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) = ( ( 𝑇 ‘ 𝑃 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) |
31 |
7 30
|
mp3anl1 |
⊢ ( ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) = ( ( 𝑇 ‘ 𝑃 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) |
32 |
8 31
|
mpanl1 |
⊢ ( ( 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) = ( ( 𝑇 ‘ 𝑃 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) |
33 |
32
|
3impb |
⊢ ( ( 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) = ( ( 𝑇 ‘ 𝑃 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) |
34 |
29 33
|
syl3an1 |
⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) = ( ( 𝑇 ‘ 𝑃 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) |
35 |
34
|
fveq2d |
⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑃 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) ) |
36 |
26 35
|
eqtr4d |
⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑃 ) 𝐷 ( 𝑇 ‘ 𝑄 ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) ) |
37 |
1 9 12 3
|
imsdval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑃 𝐶 𝑄 ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) |
38 |
7 37
|
mp3an1 |
⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑃 𝐶 𝑄 ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) |
39 |
38
|
3adant1 |
⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑃 𝐶 𝑄 ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) |
40 |
39
|
oveq2d |
⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑇 ) · ( 𝑃 𝐶 𝑄 ) ) = ( ( 𝑁 ‘ 𝑇 ) · ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) ) |
41 |
16 36 40
|
3brtr4d |
⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑃 ) 𝐷 ( 𝑇 ‘ 𝑄 ) ) ≤ ( ( 𝑁 ‘ 𝑇 ) · ( 𝑃 𝐶 𝑄 ) ) ) |