Description: A ball of a metric space is an open set. (Contributed by NM, 9-Mar-2007) (Revised by Mario Carneiro, 12-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
Assertion | blopn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝐽 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
2 | 1 | blssopn | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ran ( ball ‘ 𝐷 ) ⊆ 𝐽 ) |
3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ran ( ball ‘ 𝐷 ) ⊆ 𝐽 ) |
4 | blelrn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ ran ( ball ‘ 𝐷 ) ) | |
5 | 3 4 | sseldd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝐽 ) |