Metamath Proof Explorer


Theorem blopn

Description: A ball of a metric space is an open set. (Contributed by NM, 9-Mar-2007) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopni.1 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion blopn ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝐽 )

Proof

Step Hyp Ref Expression
1 mopni.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 1 blssopn ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ran ( ball ‘ 𝐷 ) ⊆ 𝐽 )
3 2 3ad2ant1 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑅 ∈ ℝ* ) → ran ( ball ‘ 𝐷 ) ⊆ 𝐽 )
4 blelrn ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ ran ( ball ‘ 𝐷 ) )
5 3 4 sseldd ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝐽 )