Metamath Proof Explorer


Theorem bloval

Description: The class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses bloval.3 𝑁 = ( 𝑈 normOpOLD 𝑊 )
bloval.4 𝐿 = ( 𝑈 LnOp 𝑊 )
bloval.5 𝐵 = ( 𝑈 BLnOp 𝑊 )
Assertion bloval ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐵 = { 𝑡𝐿 ∣ ( 𝑁𝑡 ) < +∞ } )

Proof

Step Hyp Ref Expression
1 bloval.3 𝑁 = ( 𝑈 normOpOLD 𝑊 )
2 bloval.4 𝐿 = ( 𝑈 LnOp 𝑊 )
3 bloval.5 𝐵 = ( 𝑈 BLnOp 𝑊 )
4 oveq1 ( 𝑢 = 𝑈 → ( 𝑢 LnOp 𝑤 ) = ( 𝑈 LnOp 𝑤 ) )
5 oveq1 ( 𝑢 = 𝑈 → ( 𝑢 normOpOLD 𝑤 ) = ( 𝑈 normOpOLD 𝑤 ) )
6 5 fveq1d ( 𝑢 = 𝑈 → ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) = ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) )
7 6 breq1d ( 𝑢 = 𝑈 → ( ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ ↔ ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ ) )
8 4 7 rabeqbidv ( 𝑢 = 𝑈 → { 𝑡 ∈ ( 𝑢 LnOp 𝑤 ) ∣ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } = { 𝑡 ∈ ( 𝑈 LnOp 𝑤 ) ∣ ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } )
9 oveq2 ( 𝑤 = 𝑊 → ( 𝑈 LnOp 𝑤 ) = ( 𝑈 LnOp 𝑊 ) )
10 9 2 eqtr4di ( 𝑤 = 𝑊 → ( 𝑈 LnOp 𝑤 ) = 𝐿 )
11 oveq2 ( 𝑤 = 𝑊 → ( 𝑈 normOpOLD 𝑤 ) = ( 𝑈 normOpOLD 𝑊 ) )
12 11 1 eqtr4di ( 𝑤 = 𝑊 → ( 𝑈 normOpOLD 𝑤 ) = 𝑁 )
13 12 fveq1d ( 𝑤 = 𝑊 → ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) = ( 𝑁𝑡 ) )
14 13 breq1d ( 𝑤 = 𝑊 → ( ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ ↔ ( 𝑁𝑡 ) < +∞ ) )
15 10 14 rabeqbidv ( 𝑤 = 𝑊 → { 𝑡 ∈ ( 𝑈 LnOp 𝑤 ) ∣ ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } = { 𝑡𝐿 ∣ ( 𝑁𝑡 ) < +∞ } )
16 df-blo BLnOp = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( 𝑢 LnOp 𝑤 ) ∣ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } )
17 2 ovexi 𝐿 ∈ V
18 17 rabex { 𝑡𝐿 ∣ ( 𝑁𝑡 ) < +∞ } ∈ V
19 8 15 16 18 ovmpo ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑈 BLnOp 𝑊 ) = { 𝑡𝐿 ∣ ( 𝑁𝑡 ) < +∞ } )
20 3 19 eqtrid ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐵 = { 𝑡𝐿 ∣ ( 𝑁𝑡 ) < +∞ } )