| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bloval.3 | ⊢ 𝑁  =  ( 𝑈  normOpOLD  𝑊 ) | 
						
							| 2 |  | bloval.4 | ⊢ 𝐿  =  ( 𝑈  LnOp  𝑊 ) | 
						
							| 3 |  | bloval.5 | ⊢ 𝐵  =  ( 𝑈  BLnOp  𝑊 ) | 
						
							| 4 |  | oveq1 | ⊢ ( 𝑢  =  𝑈  →  ( 𝑢  LnOp  𝑤 )  =  ( 𝑈  LnOp  𝑤 ) ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑢  =  𝑈  →  ( 𝑢  normOpOLD  𝑤 )  =  ( 𝑈  normOpOLD  𝑤 ) ) | 
						
							| 6 | 5 | fveq1d | ⊢ ( 𝑢  =  𝑈  →  ( ( 𝑢  normOpOLD  𝑤 ) ‘ 𝑡 )  =  ( ( 𝑈  normOpOLD  𝑤 ) ‘ 𝑡 ) ) | 
						
							| 7 | 6 | breq1d | ⊢ ( 𝑢  =  𝑈  →  ( ( ( 𝑢  normOpOLD  𝑤 ) ‘ 𝑡 )  <  +∞  ↔  ( ( 𝑈  normOpOLD  𝑤 ) ‘ 𝑡 )  <  +∞ ) ) | 
						
							| 8 | 4 7 | rabeqbidv | ⊢ ( 𝑢  =  𝑈  →  { 𝑡  ∈  ( 𝑢  LnOp  𝑤 )  ∣  ( ( 𝑢  normOpOLD  𝑤 ) ‘ 𝑡 )  <  +∞ }  =  { 𝑡  ∈  ( 𝑈  LnOp  𝑤 )  ∣  ( ( 𝑈  normOpOLD  𝑤 ) ‘ 𝑡 )  <  +∞ } ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑈  LnOp  𝑤 )  =  ( 𝑈  LnOp  𝑊 ) ) | 
						
							| 10 | 9 2 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( 𝑈  LnOp  𝑤 )  =  𝐿 ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑈  normOpOLD  𝑤 )  =  ( 𝑈  normOpOLD  𝑊 ) ) | 
						
							| 12 | 11 1 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( 𝑈  normOpOLD  𝑤 )  =  𝑁 ) | 
						
							| 13 | 12 | fveq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝑈  normOpOLD  𝑤 ) ‘ 𝑡 )  =  ( 𝑁 ‘ 𝑡 ) ) | 
						
							| 14 | 13 | breq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( 𝑈  normOpOLD  𝑤 ) ‘ 𝑡 )  <  +∞  ↔  ( 𝑁 ‘ 𝑡 )  <  +∞ ) ) | 
						
							| 15 | 10 14 | rabeqbidv | ⊢ ( 𝑤  =  𝑊  →  { 𝑡  ∈  ( 𝑈  LnOp  𝑤 )  ∣  ( ( 𝑈  normOpOLD  𝑤 ) ‘ 𝑡 )  <  +∞ }  =  { 𝑡  ∈  𝐿  ∣  ( 𝑁 ‘ 𝑡 )  <  +∞ } ) | 
						
							| 16 |  | df-blo | ⊢  BLnOp   =  ( 𝑢  ∈  NrmCVec ,  𝑤  ∈  NrmCVec  ↦  { 𝑡  ∈  ( 𝑢  LnOp  𝑤 )  ∣  ( ( 𝑢  normOpOLD  𝑤 ) ‘ 𝑡 )  <  +∞ } ) | 
						
							| 17 | 2 | ovexi | ⊢ 𝐿  ∈  V | 
						
							| 18 | 17 | rabex | ⊢ { 𝑡  ∈  𝐿  ∣  ( 𝑁 ‘ 𝑡 )  <  +∞ }  ∈  V | 
						
							| 19 | 8 15 16 18 | ovmpo | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  →  ( 𝑈  BLnOp  𝑊 )  =  { 𝑡  ∈  𝐿  ∣  ( 𝑁 ‘ 𝑡 )  <  +∞ } ) | 
						
							| 20 | 3 19 | eqtrid | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  →  𝐵  =  { 𝑡  ∈  𝐿  ∣  ( 𝑁 ‘ 𝑡 )  <  +∞ } ) |