Step |
Hyp |
Ref |
Expression |
1 |
|
bloval.3 |
⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) |
2 |
|
bloval.4 |
⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) |
3 |
|
bloval.5 |
⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) |
4 |
|
oveq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 LnOp 𝑤 ) = ( 𝑈 LnOp 𝑤 ) ) |
5 |
|
oveq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 normOpOLD 𝑤 ) = ( 𝑈 normOpOLD 𝑤 ) ) |
6 |
5
|
fveq1d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) = ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) ) |
7 |
6
|
breq1d |
⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ ↔ ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ ) ) |
8 |
4 7
|
rabeqbidv |
⊢ ( 𝑢 = 𝑈 → { 𝑡 ∈ ( 𝑢 LnOp 𝑤 ) ∣ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } = { 𝑡 ∈ ( 𝑈 LnOp 𝑤 ) ∣ ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } ) |
9 |
|
oveq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝑈 LnOp 𝑤 ) = ( 𝑈 LnOp 𝑊 ) ) |
10 |
9 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( 𝑈 LnOp 𝑤 ) = 𝐿 ) |
11 |
|
oveq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝑈 normOpOLD 𝑤 ) = ( 𝑈 normOpOLD 𝑊 ) ) |
12 |
11 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( 𝑈 normOpOLD 𝑤 ) = 𝑁 ) |
13 |
12
|
fveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) = ( 𝑁 ‘ 𝑡 ) ) |
14 |
13
|
breq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ ↔ ( 𝑁 ‘ 𝑡 ) < +∞ ) ) |
15 |
10 14
|
rabeqbidv |
⊢ ( 𝑤 = 𝑊 → { 𝑡 ∈ ( 𝑈 LnOp 𝑤 ) ∣ ( ( 𝑈 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } = { 𝑡 ∈ 𝐿 ∣ ( 𝑁 ‘ 𝑡 ) < +∞ } ) |
16 |
|
df-blo |
⊢ BLnOp = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( 𝑢 LnOp 𝑤 ) ∣ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } ) |
17 |
2
|
ovexi |
⊢ 𝐿 ∈ V |
18 |
17
|
rabex |
⊢ { 𝑡 ∈ 𝐿 ∣ ( 𝑁 ‘ 𝑡 ) < +∞ } ∈ V |
19 |
8 15 16 18
|
ovmpo |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑈 BLnOp 𝑊 ) = { 𝑡 ∈ 𝐿 ∣ ( 𝑁 ‘ 𝑡 ) < +∞ } ) |
20 |
3 19
|
syl5eq |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐵 = { 𝑡 ∈ 𝐿 ∣ ( 𝑁 ‘ 𝑡 ) < +∞ } ) |