Metamath Proof Explorer


Theorem blpnf

Description: The infinity ball in a standard metric is just the whole space. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion blpnf ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) → ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
2 xblpnf ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) → ( 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ↔ ( 𝑥𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) )
3 1 2 sylan ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) → ( 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ↔ ( 𝑥𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) )
4 metcl ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑥𝑋 ) → ( 𝑃 𝐷 𝑥 ) ∈ ℝ )
5 4 3expia ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) → ( 𝑥𝑋 → ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) )
6 5 pm4.71d ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) → ( 𝑥𝑋 ↔ ( 𝑥𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) )
7 3 6 bitr4d ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) → ( 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ↔ 𝑥𝑋 ) )
8 7 eqrdv ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) → ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) = 𝑋 )