Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( ◡ 𝐷 “ ℝ ) = ( ◡ 𝐷 “ ℝ ) |
2 |
1
|
xmeter |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ◡ 𝐷 “ ℝ ) Er 𝑋 ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → ( ◡ 𝐷 “ ℝ ) Er 𝑋 ) |
4 |
|
simp3 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) |
5 |
1
|
xmetec |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) = ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) = ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) |
7 |
4 6
|
eleqtrrd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → 𝐴 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ) |
8 |
|
elecg |
⊢ ( ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐴 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ↔ 𝑃 ( ◡ 𝐷 “ ℝ ) 𝐴 ) ) |
9 |
8
|
ancoms |
⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → ( 𝐴 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ↔ 𝑃 ( ◡ 𝐷 “ ℝ ) 𝐴 ) ) |
10 |
9
|
3adant1 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → ( 𝐴 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ↔ 𝑃 ( ◡ 𝐷 “ ℝ ) 𝐴 ) ) |
11 |
7 10
|
mpbid |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → 𝑃 ( ◡ 𝐷 “ ℝ ) 𝐴 ) |
12 |
3 11
|
erthi |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) = [ 𝐴 ] ( ◡ 𝐷 “ ℝ ) ) |
13 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
14 |
|
blssm |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ +∞ ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ⊆ 𝑋 ) |
15 |
13 14
|
mp3an3 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ⊆ 𝑋 ) |
16 |
15
|
sselda |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → 𝐴 ∈ 𝑋 ) |
17 |
1
|
xmetec |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ( ◡ 𝐷 “ ℝ ) = ( 𝐴 ( ball ‘ 𝐷 ) +∞ ) ) |
18 |
17
|
adantlr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ( ◡ 𝐷 “ ℝ ) = ( 𝐴 ( ball ‘ 𝐷 ) +∞ ) ) |
19 |
16 18
|
syldan |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → [ 𝐴 ] ( ◡ 𝐷 “ ℝ ) = ( 𝐴 ( ball ‘ 𝐷 ) +∞ ) ) |
20 |
19
|
3impa |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → [ 𝐴 ] ( ◡ 𝐷 “ ℝ ) = ( 𝐴 ( ball ‘ 𝐷 ) +∞ ) ) |
21 |
12 6 20
|
3eqtr3d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) → ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) = ( 𝐴 ( ball ‘ 𝐷 ) +∞ ) ) |