| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( ◡ 𝐷  “  ℝ )  =  ( ◡ 𝐷  “  ℝ ) | 
						
							| 2 | 1 | xmeter | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( ◡ 𝐷  “  ℝ )  Er  𝑋 ) | 
						
							| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝐴  ∈  ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) )  →  ( ◡ 𝐷  “  ℝ )  Er  𝑋 ) | 
						
							| 4 |  | simp3 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝐴  ∈  ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) )  →  𝐴  ∈  ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) | 
						
							| 5 | 1 | xmetec | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋 )  →  [ 𝑃 ] ( ◡ 𝐷  “  ℝ )  =  ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) | 
						
							| 6 | 5 | 3adant3 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝐴  ∈  ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) )  →  [ 𝑃 ] ( ◡ 𝐷  “  ℝ )  =  ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) | 
						
							| 7 | 4 6 | eleqtrrd | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝐴  ∈  ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) )  →  𝐴  ∈  [ 𝑃 ] ( ◡ 𝐷  “  ℝ ) ) | 
						
							| 8 |  | elecg | ⊢ ( ( 𝐴  ∈  ( 𝑃 ( ball ‘ 𝐷 ) +∞ )  ∧  𝑃  ∈  𝑋 )  →  ( 𝐴  ∈  [ 𝑃 ] ( ◡ 𝐷  “  ℝ )  ↔  𝑃 ( ◡ 𝐷  “  ℝ ) 𝐴 ) ) | 
						
							| 9 | 8 | ancoms | ⊢ ( ( 𝑃  ∈  𝑋  ∧  𝐴  ∈  ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) )  →  ( 𝐴  ∈  [ 𝑃 ] ( ◡ 𝐷  “  ℝ )  ↔  𝑃 ( ◡ 𝐷  “  ℝ ) 𝐴 ) ) | 
						
							| 10 | 9 | 3adant1 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝐴  ∈  ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) )  →  ( 𝐴  ∈  [ 𝑃 ] ( ◡ 𝐷  “  ℝ )  ↔  𝑃 ( ◡ 𝐷  “  ℝ ) 𝐴 ) ) | 
						
							| 11 | 7 10 | mpbid | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝐴  ∈  ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) )  →  𝑃 ( ◡ 𝐷  “  ℝ ) 𝐴 ) | 
						
							| 12 | 3 11 | erthi | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝐴  ∈  ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) )  →  [ 𝑃 ] ( ◡ 𝐷  “  ℝ )  =  [ 𝐴 ] ( ◡ 𝐷  “  ℝ ) ) | 
						
							| 13 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 14 |  | blssm | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  +∞  ∈  ℝ* )  →  ( 𝑃 ( ball ‘ 𝐷 ) +∞ )  ⊆  𝑋 ) | 
						
							| 15 | 13 14 | mp3an3 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋 )  →  ( 𝑃 ( ball ‘ 𝐷 ) +∞ )  ⊆  𝑋 ) | 
						
							| 16 | 15 | sselda | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐴  ∈  ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 17 | 1 | xmetec | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  [ 𝐴 ] ( ◡ 𝐷  “  ℝ )  =  ( 𝐴 ( ball ‘ 𝐷 ) +∞ ) ) | 
						
							| 18 | 17 | adantlr | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐴  ∈  𝑋 )  →  [ 𝐴 ] ( ◡ 𝐷  “  ℝ )  =  ( 𝐴 ( ball ‘ 𝐷 ) +∞ ) ) | 
						
							| 19 | 16 18 | syldan | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐴  ∈  ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) )  →  [ 𝐴 ] ( ◡ 𝐷  “  ℝ )  =  ( 𝐴 ( ball ‘ 𝐷 ) +∞ ) ) | 
						
							| 20 | 19 | 3impa | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝐴  ∈  ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) )  →  [ 𝐴 ] ( ◡ 𝐷  “  ℝ )  =  ( 𝐴 ( ball ‘ 𝐷 ) +∞ ) ) | 
						
							| 21 | 12 6 20 | 3eqtr3d | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝐴  ∈  ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) )  →  ( 𝑃 ( ball ‘ 𝐷 ) +∞ )  =  ( 𝐴 ( ball ‘ 𝐷 ) +∞ ) ) |