Metamath Proof Explorer


Theorem blsscls

Description: If two concentric balls have different radii, the closure of the smaller one is contained in the larger one. (Contributed by Mario Carneiro, 5-Jan-2014)

Ref Expression
Hypothesis blsscls.2 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion blsscls ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) ∧ ( 𝑅 ∈ ℝ*𝑆 ∈ ℝ*𝑅 < 𝑆 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑆 ) )

Proof

Step Hyp Ref Expression
1 blsscls.2 𝐽 = ( MetOpen ‘ 𝐷 )
2 eqid { 𝑥𝑋 ∣ ( 𝑃 𝐷 𝑥 ) ≤ 𝑅 } = { 𝑥𝑋 ∣ ( 𝑃 𝐷 𝑥 ) ≤ 𝑅 }
3 1 2 blcls ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑅 ∈ ℝ* ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ⊆ { 𝑥𝑋 ∣ ( 𝑃 𝐷 𝑥 ) ≤ 𝑅 } )
4 3 3expa ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ⊆ { 𝑥𝑋 ∣ ( 𝑃 𝐷 𝑥 ) ≤ 𝑅 } )
5 4 3ad2antr1 ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) ∧ ( 𝑅 ∈ ℝ*𝑆 ∈ ℝ*𝑅 < 𝑆 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ⊆ { 𝑥𝑋 ∣ ( 𝑃 𝐷 𝑥 ) ≤ 𝑅 } )
6 1 2 blsscls2 ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) ∧ ( 𝑅 ∈ ℝ*𝑆 ∈ ℝ*𝑅 < 𝑆 ) ) → { 𝑥𝑋 ∣ ( 𝑃 𝐷 𝑥 ) ≤ 𝑅 } ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑆 ) )
7 5 6 sstrd ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) ∧ ( 𝑅 ∈ ℝ*𝑆 ∈ ℝ*𝑅 < 𝑆 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑆 ) )