Step |
Hyp |
Ref |
Expression |
1 |
|
xmeter.1 |
⊢ ∼ = ( ◡ 𝐷 “ ℝ ) |
2 |
|
pnfge |
⊢ ( 𝑆 ∈ ℝ* → 𝑆 ≤ +∞ ) |
3 |
2
|
adantl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑆 ∈ ℝ* ) → 𝑆 ≤ +∞ ) |
4 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
5 |
|
ssbl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑆 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ 𝑆 ≤ +∞ ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑆 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) |
6 |
5
|
3expia |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑆 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ) → ( 𝑆 ≤ +∞ → ( 𝑃 ( ball ‘ 𝐷 ) 𝑆 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) ) |
7 |
4 6
|
mpanr2 |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑆 ∈ ℝ* ) → ( 𝑆 ≤ +∞ → ( 𝑃 ( ball ‘ 𝐷 ) 𝑆 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) ) |
8 |
3 7
|
mpd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑆 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑆 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) |
9 |
8
|
3impa |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑆 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) |
10 |
1
|
xmetec |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → [ 𝑃 ] ∼ = ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) |
11 |
10
|
3adant3 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ) → [ 𝑃 ] ∼ = ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) |
12 |
9 11
|
sseqtrrd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑆 ) ⊆ [ 𝑃 ] ∼ ) |