Step |
Hyp |
Ref |
Expression |
1 |
|
remet.1 |
β’ π· = ( ( abs β β ) βΎ ( β Γ β ) ) |
2 |
1
|
rexmet |
β’ π· β ( βMet β β ) |
3 |
|
blrn |
β’ ( π· β ( βMet β β ) β ( π§ β ran ( ball β π· ) β β π¦ β β β π β β* π§ = ( π¦ ( ball β π· ) π ) ) ) |
4 |
2 3
|
ax-mp |
β’ ( π§ β ran ( ball β π· ) β β π¦ β β β π β β* π§ = ( π¦ ( ball β π· ) π ) ) |
5 |
|
elxr |
β’ ( π β β* β ( π β β β¨ π = +β β¨ π = -β ) ) |
6 |
1
|
bl2ioo |
β’ ( ( π¦ β β β§ π β β ) β ( π¦ ( ball β π· ) π ) = ( ( π¦ β π ) (,) ( π¦ + π ) ) ) |
7 |
|
resubcl |
β’ ( ( π¦ β β β§ π β β ) β ( π¦ β π ) β β ) |
8 |
|
readdcl |
β’ ( ( π¦ β β β§ π β β ) β ( π¦ + π ) β β ) |
9 |
|
ioof |
β’ (,) : ( β* Γ β* ) βΆ π« β |
10 |
|
ffn |
β’ ( (,) : ( β* Γ β* ) βΆ π« β β (,) Fn ( β* Γ β* ) ) |
11 |
9 10
|
ax-mp |
β’ (,) Fn ( β* Γ β* ) |
12 |
|
rexr |
β’ ( ( π¦ β π ) β β β ( π¦ β π ) β β* ) |
13 |
|
rexr |
β’ ( ( π¦ + π ) β β β ( π¦ + π ) β β* ) |
14 |
|
fnovrn |
β’ ( ( (,) Fn ( β* Γ β* ) β§ ( π¦ β π ) β β* β§ ( π¦ + π ) β β* ) β ( ( π¦ β π ) (,) ( π¦ + π ) ) β ran (,) ) |
15 |
11 12 13 14
|
mp3an3an |
β’ ( ( ( π¦ β π ) β β β§ ( π¦ + π ) β β ) β ( ( π¦ β π ) (,) ( π¦ + π ) ) β ran (,) ) |
16 |
7 8 15
|
syl2anc |
β’ ( ( π¦ β β β§ π β β ) β ( ( π¦ β π ) (,) ( π¦ + π ) ) β ran (,) ) |
17 |
6 16
|
eqeltrd |
β’ ( ( π¦ β β β§ π β β ) β ( π¦ ( ball β π· ) π ) β ran (,) ) |
18 |
|
oveq2 |
β’ ( π = +β β ( π¦ ( ball β π· ) π ) = ( π¦ ( ball β π· ) +β ) ) |
19 |
1
|
remet |
β’ π· β ( Met β β ) |
20 |
|
blpnf |
β’ ( ( π· β ( Met β β ) β§ π¦ β β ) β ( π¦ ( ball β π· ) +β ) = β ) |
21 |
19 20
|
mpan |
β’ ( π¦ β β β ( π¦ ( ball β π· ) +β ) = β ) |
22 |
18 21
|
sylan9eqr |
β’ ( ( π¦ β β β§ π = +β ) β ( π¦ ( ball β π· ) π ) = β ) |
23 |
|
ioomax |
β’ ( -β (,) +β ) = β |
24 |
|
ioorebas |
β’ ( -β (,) +β ) β ran (,) |
25 |
23 24
|
eqeltrri |
β’ β β ran (,) |
26 |
22 25
|
eqeltrdi |
β’ ( ( π¦ β β β§ π = +β ) β ( π¦ ( ball β π· ) π ) β ran (,) ) |
27 |
|
oveq2 |
β’ ( π = -β β ( π¦ ( ball β π· ) π ) = ( π¦ ( ball β π· ) -β ) ) |
28 |
|
0xr |
β’ 0 β β* |
29 |
|
nltmnf |
β’ ( 0 β β* β Β¬ 0 < -β ) |
30 |
28 29
|
ax-mp |
β’ Β¬ 0 < -β |
31 |
|
mnfxr |
β’ -β β β* |
32 |
|
xbln0 |
β’ ( ( π· β ( βMet β β ) β§ π¦ β β β§ -β β β* ) β ( ( π¦ ( ball β π· ) -β ) β β
β 0 < -β ) ) |
33 |
2 31 32
|
mp3an13 |
β’ ( π¦ β β β ( ( π¦ ( ball β π· ) -β ) β β
β 0 < -β ) ) |
34 |
33
|
necon1bbid |
β’ ( π¦ β β β ( Β¬ 0 < -β β ( π¦ ( ball β π· ) -β ) = β
) ) |
35 |
30 34
|
mpbii |
β’ ( π¦ β β β ( π¦ ( ball β π· ) -β ) = β
) |
36 |
27 35
|
sylan9eqr |
β’ ( ( π¦ β β β§ π = -β ) β ( π¦ ( ball β π· ) π ) = β
) |
37 |
|
iooid |
β’ ( 0 (,) 0 ) = β
|
38 |
|
ioorebas |
β’ ( 0 (,) 0 ) β ran (,) |
39 |
37 38
|
eqeltrri |
β’ β
β ran (,) |
40 |
36 39
|
eqeltrdi |
β’ ( ( π¦ β β β§ π = -β ) β ( π¦ ( ball β π· ) π ) β ran (,) ) |
41 |
17 26 40
|
3jaodan |
β’ ( ( π¦ β β β§ ( π β β β¨ π = +β β¨ π = -β ) ) β ( π¦ ( ball β π· ) π ) β ran (,) ) |
42 |
5 41
|
sylan2b |
β’ ( ( π¦ β β β§ π β β* ) β ( π¦ ( ball β π· ) π ) β ran (,) ) |
43 |
|
eleq1 |
β’ ( π§ = ( π¦ ( ball β π· ) π ) β ( π§ β ran (,) β ( π¦ ( ball β π· ) π ) β ran (,) ) ) |
44 |
42 43
|
syl5ibrcom |
β’ ( ( π¦ β β β§ π β β* ) β ( π§ = ( π¦ ( ball β π· ) π ) β π§ β ran (,) ) ) |
45 |
44
|
rexlimivv |
β’ ( β π¦ β β β π β β* π§ = ( π¦ ( ball β π· ) π ) β π§ β ran (,) ) |
46 |
4 45
|
sylbi |
β’ ( π§ β ran ( ball β π· ) β π§ β ran (,) ) |
47 |
46
|
ssriv |
β’ ran ( ball β π· ) β ran (,) |