Step |
Hyp |
Ref |
Expression |
1 |
|
remet.1 |
⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
2 |
1
|
rexmet |
⊢ 𝐷 ∈ ( ∞Met ‘ ℝ ) |
3 |
|
blrn |
⊢ ( 𝐷 ∈ ( ∞Met ‘ ℝ ) → ( 𝑧 ∈ ran ( ball ‘ 𝐷 ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑟 ∈ ℝ* 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
4 |
2 3
|
ax-mp |
⊢ ( 𝑧 ∈ ran ( ball ‘ 𝐷 ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑟 ∈ ℝ* 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) |
5 |
|
elxr |
⊢ ( 𝑟 ∈ ℝ* ↔ ( 𝑟 ∈ ℝ ∨ 𝑟 = +∞ ∨ 𝑟 = -∞ ) ) |
6 |
1
|
bl2ioo |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ( ( 𝑦 − 𝑟 ) (,) ( 𝑦 + 𝑟 ) ) ) |
7 |
|
resubcl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( 𝑦 − 𝑟 ) ∈ ℝ ) |
8 |
|
readdcl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( 𝑦 + 𝑟 ) ∈ ℝ ) |
9 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
10 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
11 |
9 10
|
ax-mp |
⊢ (,) Fn ( ℝ* × ℝ* ) |
12 |
|
rexr |
⊢ ( ( 𝑦 − 𝑟 ) ∈ ℝ → ( 𝑦 − 𝑟 ) ∈ ℝ* ) |
13 |
|
rexr |
⊢ ( ( 𝑦 + 𝑟 ) ∈ ℝ → ( 𝑦 + 𝑟 ) ∈ ℝ* ) |
14 |
|
fnovrn |
⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ ( 𝑦 − 𝑟 ) ∈ ℝ* ∧ ( 𝑦 + 𝑟 ) ∈ ℝ* ) → ( ( 𝑦 − 𝑟 ) (,) ( 𝑦 + 𝑟 ) ) ∈ ran (,) ) |
15 |
11 12 13 14
|
mp3an3an |
⊢ ( ( ( 𝑦 − 𝑟 ) ∈ ℝ ∧ ( 𝑦 + 𝑟 ) ∈ ℝ ) → ( ( 𝑦 − 𝑟 ) (,) ( 𝑦 + 𝑟 ) ) ∈ ran (,) ) |
16 |
7 8 15
|
syl2anc |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( 𝑦 − 𝑟 ) (,) ( 𝑦 + 𝑟 ) ) ∈ ran (,) ) |
17 |
6 16
|
eqeltrd |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran (,) ) |
18 |
|
oveq2 |
⊢ ( 𝑟 = +∞ → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ( 𝑦 ( ball ‘ 𝐷 ) +∞ ) ) |
19 |
1
|
remet |
⊢ 𝐷 ∈ ( Met ‘ ℝ ) |
20 |
|
blpnf |
⊢ ( ( 𝐷 ∈ ( Met ‘ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ( ball ‘ 𝐷 ) +∞ ) = ℝ ) |
21 |
19 20
|
mpan |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 ( ball ‘ 𝐷 ) +∞ ) = ℝ ) |
22 |
18 21
|
sylan9eqr |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 = +∞ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ℝ ) |
23 |
|
ioomax |
⊢ ( -∞ (,) +∞ ) = ℝ |
24 |
|
ioorebas |
⊢ ( -∞ (,) +∞ ) ∈ ran (,) |
25 |
23 24
|
eqeltrri |
⊢ ℝ ∈ ran (,) |
26 |
22 25
|
eqeltrdi |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 = +∞ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran (,) ) |
27 |
|
oveq2 |
⊢ ( 𝑟 = -∞ → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ( 𝑦 ( ball ‘ 𝐷 ) -∞ ) ) |
28 |
|
0xr |
⊢ 0 ∈ ℝ* |
29 |
|
nltmnf |
⊢ ( 0 ∈ ℝ* → ¬ 0 < -∞ ) |
30 |
28 29
|
ax-mp |
⊢ ¬ 0 < -∞ |
31 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
32 |
|
xbln0 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℝ ) ∧ 𝑦 ∈ ℝ ∧ -∞ ∈ ℝ* ) → ( ( 𝑦 ( ball ‘ 𝐷 ) -∞ ) ≠ ∅ ↔ 0 < -∞ ) ) |
33 |
2 31 32
|
mp3an13 |
⊢ ( 𝑦 ∈ ℝ → ( ( 𝑦 ( ball ‘ 𝐷 ) -∞ ) ≠ ∅ ↔ 0 < -∞ ) ) |
34 |
33
|
necon1bbid |
⊢ ( 𝑦 ∈ ℝ → ( ¬ 0 < -∞ ↔ ( 𝑦 ( ball ‘ 𝐷 ) -∞ ) = ∅ ) ) |
35 |
30 34
|
mpbii |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 ( ball ‘ 𝐷 ) -∞ ) = ∅ ) |
36 |
27 35
|
sylan9eqr |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 = -∞ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ∅ ) |
37 |
|
iooid |
⊢ ( 0 (,) 0 ) = ∅ |
38 |
|
ioorebas |
⊢ ( 0 (,) 0 ) ∈ ran (,) |
39 |
37 38
|
eqeltrri |
⊢ ∅ ∈ ran (,) |
40 |
36 39
|
eqeltrdi |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 = -∞ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran (,) ) |
41 |
17 26 40
|
3jaodan |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝑟 ∈ ℝ ∨ 𝑟 = +∞ ∨ 𝑟 = -∞ ) ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran (,) ) |
42 |
5 41
|
sylan2b |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran (,) ) |
43 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑧 ∈ ran (,) ↔ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran (,) ) ) |
44 |
42 43
|
syl5ibrcom |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ* ) → ( 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) → 𝑧 ∈ ran (,) ) ) |
45 |
44
|
rexlimivv |
⊢ ( ∃ 𝑦 ∈ ℝ ∃ 𝑟 ∈ ℝ* 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) → 𝑧 ∈ ran (,) ) |
46 |
4 45
|
sylbi |
⊢ ( 𝑧 ∈ ran ( ball ‘ 𝐷 ) → 𝑧 ∈ ran (,) ) |
47 |
46
|
ssriv |
⊢ ran ( ball ‘ 𝐷 ) ⊆ ran (,) |