Metamath Proof Explorer


Theorem blssioo

Description: The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007) (Revised by Mario Carneiro, 13-Nov-2013)

Ref Expression
Hypothesis remet.1 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) )
Assertion blssioo ran ( ball ‘ 𝐷 ) ⊆ ran (,)

Proof

Step Hyp Ref Expression
1 remet.1 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) )
2 1 rexmet 𝐷 ∈ ( ∞Met ‘ ℝ )
3 blrn ( 𝐷 ∈ ( ∞Met ‘ ℝ ) → ( 𝑧 ∈ ran ( ball ‘ 𝐷 ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑟 ∈ ℝ* 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) )
4 2 3 ax-mp ( 𝑧 ∈ ran ( ball ‘ 𝐷 ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑟 ∈ ℝ* 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) )
5 elxr ( 𝑟 ∈ ℝ* ↔ ( 𝑟 ∈ ℝ ∨ 𝑟 = +∞ ∨ 𝑟 = -∞ ) )
6 1 bl2ioo ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ( ( 𝑦𝑟 ) (,) ( 𝑦 + 𝑟 ) ) )
7 resubcl ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( 𝑦𝑟 ) ∈ ℝ )
8 readdcl ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( 𝑦 + 𝑟 ) ∈ ℝ )
9 ioof (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ
10 ffn ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) )
11 9 10 ax-mp (,) Fn ( ℝ* × ℝ* )
12 rexr ( ( 𝑦𝑟 ) ∈ ℝ → ( 𝑦𝑟 ) ∈ ℝ* )
13 rexr ( ( 𝑦 + 𝑟 ) ∈ ℝ → ( 𝑦 + 𝑟 ) ∈ ℝ* )
14 fnovrn ( ( (,) Fn ( ℝ* × ℝ* ) ∧ ( 𝑦𝑟 ) ∈ ℝ* ∧ ( 𝑦 + 𝑟 ) ∈ ℝ* ) → ( ( 𝑦𝑟 ) (,) ( 𝑦 + 𝑟 ) ) ∈ ran (,) )
15 11 12 13 14 mp3an3an ( ( ( 𝑦𝑟 ) ∈ ℝ ∧ ( 𝑦 + 𝑟 ) ∈ ℝ ) → ( ( 𝑦𝑟 ) (,) ( 𝑦 + 𝑟 ) ) ∈ ran (,) )
16 7 8 15 syl2anc ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( 𝑦𝑟 ) (,) ( 𝑦 + 𝑟 ) ) ∈ ran (,) )
17 6 16 eqeltrd ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran (,) )
18 oveq2 ( 𝑟 = +∞ → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ( 𝑦 ( ball ‘ 𝐷 ) +∞ ) )
19 1 remet 𝐷 ∈ ( Met ‘ ℝ )
20 blpnf ( ( 𝐷 ∈ ( Met ‘ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ( ball ‘ 𝐷 ) +∞ ) = ℝ )
21 19 20 mpan ( 𝑦 ∈ ℝ → ( 𝑦 ( ball ‘ 𝐷 ) +∞ ) = ℝ )
22 18 21 sylan9eqr ( ( 𝑦 ∈ ℝ ∧ 𝑟 = +∞ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ℝ )
23 ioomax ( -∞ (,) +∞ ) = ℝ
24 ioorebas ( -∞ (,) +∞ ) ∈ ran (,)
25 23 24 eqeltrri ℝ ∈ ran (,)
26 22 25 eqeltrdi ( ( 𝑦 ∈ ℝ ∧ 𝑟 = +∞ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran (,) )
27 oveq2 ( 𝑟 = -∞ → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ( 𝑦 ( ball ‘ 𝐷 ) -∞ ) )
28 0xr 0 ∈ ℝ*
29 nltmnf ( 0 ∈ ℝ* → ¬ 0 < -∞ )
30 28 29 ax-mp ¬ 0 < -∞
31 mnfxr -∞ ∈ ℝ*
32 xbln0 ( ( 𝐷 ∈ ( ∞Met ‘ ℝ ) ∧ 𝑦 ∈ ℝ ∧ -∞ ∈ ℝ* ) → ( ( 𝑦 ( ball ‘ 𝐷 ) -∞ ) ≠ ∅ ↔ 0 < -∞ ) )
33 2 31 32 mp3an13 ( 𝑦 ∈ ℝ → ( ( 𝑦 ( ball ‘ 𝐷 ) -∞ ) ≠ ∅ ↔ 0 < -∞ ) )
34 33 necon1bbid ( 𝑦 ∈ ℝ → ( ¬ 0 < -∞ ↔ ( 𝑦 ( ball ‘ 𝐷 ) -∞ ) = ∅ ) )
35 30 34 mpbii ( 𝑦 ∈ ℝ → ( 𝑦 ( ball ‘ 𝐷 ) -∞ ) = ∅ )
36 27 35 sylan9eqr ( ( 𝑦 ∈ ℝ ∧ 𝑟 = -∞ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ∅ )
37 iooid ( 0 (,) 0 ) = ∅
38 ioorebas ( 0 (,) 0 ) ∈ ran (,)
39 37 38 eqeltrri ∅ ∈ ran (,)
40 36 39 eqeltrdi ( ( 𝑦 ∈ ℝ ∧ 𝑟 = -∞ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran (,) )
41 17 26 40 3jaodan ( ( 𝑦 ∈ ℝ ∧ ( 𝑟 ∈ ℝ ∨ 𝑟 = +∞ ∨ 𝑟 = -∞ ) ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran (,) )
42 5 41 sylan2b ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran (,) )
43 eleq1 ( 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑧 ∈ ran (,) ↔ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran (,) ) )
44 42 43 syl5ibrcom ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ* ) → ( 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) → 𝑧 ∈ ran (,) ) )
45 44 rexlimivv ( ∃ 𝑦 ∈ ℝ ∃ 𝑟 ∈ ℝ* 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) → 𝑧 ∈ ran (,) )
46 4 45 sylbi ( 𝑧 ∈ ran ( ball ‘ 𝐷 ) → 𝑧 ∈ ran (,) )
47 46 ssriv ran ( ball ‘ 𝐷 ) ⊆ ran (,)