Description: A ball is a subset of the base set of a metric space. (Contributed by NM, 31-Aug-2006) (Revised by Mario Carneiro, 12-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | blssm | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blf | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ball ‘ 𝐷 ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 ) | |
2 | fovrn | ⊢ ( ( ( ball ‘ 𝐷 ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝒫 𝑋 ) | |
3 | 1 2 | syl3an1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝒫 𝑋 ) |
4 | 3 | elpwid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ 𝑋 ) |