Metamath Proof Explorer


Theorem blssm

Description: A ball is a subset of the base set of a metric space. (Contributed by NM, 31-Aug-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Assertion blssm ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ 𝑋 )

Proof

Step Hyp Ref Expression
1 blf ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ball ‘ 𝐷 ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 )
2 fovrn ( ( ( ball ‘ 𝐷 ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋𝑃𝑋𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝒫 𝑋 )
3 1 2 syl3an1 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝒫 𝑋 )
4 3 elpwid ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ 𝑋 )