Step |
Hyp |
Ref |
Expression |
1 |
|
blssp.2 |
β’ π = ( π βΎ ( π Γ π ) ) |
2 |
|
metxmet |
β’ ( π β ( Met β π ) β π β ( βMet β π ) ) |
3 |
2
|
ad2antrr |
β’ ( ( ( π β ( Met β π ) β§ π β π ) β§ ( π β π β§ π
β β+ ) ) β π β ( βMet β π ) ) |
4 |
|
simprl |
β’ ( ( ( π β ( Met β π ) β§ π β π ) β§ ( π β π β§ π
β β+ ) ) β π β π ) |
5 |
|
simplr |
β’ ( ( ( π β ( Met β π ) β§ π β π ) β§ ( π β π β§ π
β β+ ) ) β π β π ) |
6 |
|
sseqin2 |
β’ ( π β π β ( π β© π ) = π ) |
7 |
5 6
|
sylib |
β’ ( ( ( π β ( Met β π ) β§ π β π ) β§ ( π β π β§ π
β β+ ) ) β ( π β© π ) = π ) |
8 |
4 7
|
eleqtrrd |
β’ ( ( ( π β ( Met β π ) β§ π β π ) β§ ( π β π β§ π
β β+ ) ) β π β ( π β© π ) ) |
9 |
|
rpxr |
β’ ( π
β β+ β π
β β* ) |
10 |
9
|
ad2antll |
β’ ( ( ( π β ( Met β π ) β§ π β π ) β§ ( π β π β§ π
β β+ ) ) β π
β β* ) |
11 |
1
|
blres |
β’ ( ( π β ( βMet β π ) β§ π β ( π β© π ) β§ π
β β* ) β ( π ( ball β π ) π
) = ( ( π ( ball β π ) π
) β© π ) ) |
12 |
3 8 10 11
|
syl3anc |
β’ ( ( ( π β ( Met β π ) β§ π β π ) β§ ( π β π β§ π
β β+ ) ) β ( π ( ball β π ) π
) = ( ( π ( ball β π ) π
) β© π ) ) |