Step |
Hyp |
Ref |
Expression |
1 |
|
blfval |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ball ‘ 𝐷 ) = ( 𝑦 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑥 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑥 ) < 𝑟 } ) ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( ball ‘ 𝐷 ) = ( 𝑦 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑥 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑥 ) < 𝑟 } ) ) |
3 |
|
simprl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑦 = 𝑃 ∧ 𝑟 = 𝑅 ) ) → 𝑦 = 𝑃 ) |
4 |
3
|
oveq1d |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑦 = 𝑃 ∧ 𝑟 = 𝑅 ) ) → ( 𝑦 𝐷 𝑥 ) = ( 𝑃 𝐷 𝑥 ) ) |
5 |
|
simprr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑦 = 𝑃 ∧ 𝑟 = 𝑅 ) ) → 𝑟 = 𝑅 ) |
6 |
4 5
|
breq12d |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑦 = 𝑃 ∧ 𝑟 = 𝑅 ) ) → ( ( 𝑦 𝐷 𝑥 ) < 𝑟 ↔ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ) |
7 |
6
|
rabbidv |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑦 = 𝑃 ∧ 𝑟 = 𝑅 ) ) → { 𝑥 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑥 ) < 𝑟 } = { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) < 𝑅 } ) |
8 |
|
simp2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → 𝑃 ∈ 𝑋 ) |
9 |
|
simp3 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → 𝑅 ∈ ℝ* ) |
10 |
|
elfvdm |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → 𝑋 ∈ dom ∞Met ) |
12 |
|
rabexg |
⊢ ( 𝑋 ∈ dom ∞Met → { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) < 𝑅 } ∈ V ) |
13 |
11 12
|
syl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) < 𝑅 } ∈ V ) |
14 |
2 7 8 9 13
|
ovmpod |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) = { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) < 𝑅 } ) |