Metamath Proof Explorer


Theorem bncmet

Description: The induced metric on Banach space is complete. (Contributed by NM, 8-Sep-2007) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses iscms.1 𝑋 = ( Base ‘ 𝑀 )
iscms.2 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) )
Assertion bncmet ( 𝑀 ∈ Ban → 𝐷 ∈ ( CMet ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 iscms.1 𝑋 = ( Base ‘ 𝑀 )
2 iscms.2 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) )
3 bncms ( 𝑀 ∈ Ban → 𝑀 ∈ CMetSp )
4 1 2 cmscmet ( 𝑀 ∈ CMetSp → 𝐷 ∈ ( CMet ‘ 𝑋 ) )
5 3 4 syl ( 𝑀 ∈ Ban → 𝐷 ∈ ( CMet ‘ 𝑋 ) )