| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmslssbn.x | ⊢ 𝑋  =  ( 𝑊  ↾s  𝑈 ) | 
						
							| 2 |  | cmscsscms.s | ⊢ 𝑆  =  ( ClSubSp ‘ 𝑊 ) | 
						
							| 3 |  | bnnvc | ⊢ ( 𝑊  ∈  Ban  →  𝑊  ∈  NrmVec ) | 
						
							| 4 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 5 | 4 | bnsca | ⊢ ( 𝑊  ∈  Ban  →  ( Scalar ‘ 𝑊 )  ∈  CMetSp ) | 
						
							| 6 | 3 5 | jca | ⊢ ( 𝑊  ∈  Ban  →  ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp ) ) | 
						
							| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝑊  ∈  Ban  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp ) ) | 
						
							| 8 |  | bncms | ⊢ ( 𝑊  ∈  Ban  →  𝑊  ∈  CMetSp ) | 
						
							| 9 | 1 2 | cmscsscms | ⊢ ( ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  CMetSp ) | 
						
							| 10 | 8 9 | sylanl1 | ⊢ ( ( ( 𝑊  ∈  Ban  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  CMetSp ) | 
						
							| 11 |  | cphphl | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  PreHil ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑊  ∈  Ban  ∧  𝑊  ∈  ℂPreHil )  →  𝑊  ∈  PreHil ) | 
						
							| 13 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 14 | 2 13 | csslss | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  𝑈  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 15 | 12 14 | sylan | ⊢ ( ( ( 𝑊  ∈  Ban  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  𝑈  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 16 | 1 13 | cmslssbn | ⊢ ( ( ( 𝑊  ∈  NrmVec  ∧  ( Scalar ‘ 𝑊 )  ∈  CMetSp )  ∧  ( 𝑋  ∈  CMetSp  ∧  𝑈  ∈  ( LSubSp ‘ 𝑊 ) ) )  →  𝑋  ∈  Ban ) | 
						
							| 17 | 7 10 15 16 | syl12anc | ⊢ ( ( ( 𝑊  ∈  Ban  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  Ban ) |