Step |
Hyp |
Ref |
Expression |
1 |
|
bnd2.1 |
⊢ 𝐴 ∈ V |
2 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
3 |
2
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
4 |
|
raleq |
⊢ ( 𝑣 = 𝐴 → ( ∀ 𝑥 ∈ 𝑣 ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
5 |
|
raleq |
⊢ ( 𝑣 = 𝐴 → ( ∀ 𝑥 ∈ 𝑣 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
6 |
5
|
exbidv |
⊢ ( 𝑣 = 𝐴 → ( ∃ 𝑤 ∀ 𝑥 ∈ 𝑣 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
7 |
4 6
|
imbi12d |
⊢ ( 𝑣 = 𝐴 → ( ( ∀ 𝑥 ∈ 𝑣 ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ∃ 𝑤 ∀ 𝑥 ∈ 𝑣 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) ) |
8 |
|
bnd |
⊢ ( ∀ 𝑥 ∈ 𝑣 ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ∃ 𝑤 ∀ 𝑥 ∈ 𝑣 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
9 |
1 7 8
|
vtocl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
10 |
3 9
|
sylbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
11 |
|
vex |
⊢ 𝑤 ∈ V |
12 |
11
|
inex1 |
⊢ ( 𝑤 ∩ 𝐵 ) ∈ V |
13 |
|
inss2 |
⊢ ( 𝑤 ∩ 𝐵 ) ⊆ 𝐵 |
14 |
|
sseq1 |
⊢ ( 𝑧 = ( 𝑤 ∩ 𝐵 ) → ( 𝑧 ⊆ 𝐵 ↔ ( 𝑤 ∩ 𝐵 ) ⊆ 𝐵 ) ) |
15 |
13 14
|
mpbiri |
⊢ ( 𝑧 = ( 𝑤 ∩ 𝐵 ) → 𝑧 ⊆ 𝐵 ) |
16 |
15
|
biantrurd |
⊢ ( 𝑧 = ( 𝑤 ∩ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜑 ↔ ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜑 ) ) ) |
17 |
|
rexeq |
⊢ ( 𝑧 = ( 𝑤 ∩ 𝐵 ) → ( ∃ 𝑦 ∈ 𝑧 𝜑 ↔ ∃ 𝑦 ∈ ( 𝑤 ∩ 𝐵 ) 𝜑 ) ) |
18 |
|
rexin |
⊢ ( ∃ 𝑦 ∈ ( 𝑤 ∩ 𝐵 ) 𝜑 ↔ ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
19 |
17 18
|
bitrdi |
⊢ ( 𝑧 = ( 𝑤 ∩ 𝐵 ) → ( ∃ 𝑦 ∈ 𝑧 𝜑 ↔ ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
20 |
19
|
ralbidv |
⊢ ( 𝑧 = ( 𝑤 ∩ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
21 |
16 20
|
bitr3d |
⊢ ( 𝑧 = ( 𝑤 ∩ 𝐵 ) → ( ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
22 |
12 21
|
spcev |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜑 ) ) |
23 |
22
|
exlimiv |
⊢ ( ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜑 ) ) |
24 |
10 23
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑧 𝜑 ) ) |