Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐴 ∈ ℂ ) |
2 |
|
sqcl |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
4 |
3
|
abscld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( 𝐴 ↑ 2 ) ) ∈ ℝ ) |
5 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
6 |
|
absexp |
⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ 2 ) ) = ( ( abs ‘ 𝐴 ) ↑ 2 ) ) |
7 |
1 5 6
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( 𝐴 ↑ 2 ) ) = ( ( abs ‘ 𝐴 ) ↑ 2 ) ) |
8 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) < 1 ) |
9 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
11 |
|
1red |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 1 ∈ ℝ ) |
12 |
|
absge0 |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
14 |
|
0le1 |
⊢ 0 ≤ 1 |
15 |
14
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 0 ≤ 1 ) |
16 |
10 11 13 15
|
lt2sqd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( abs ‘ 𝐴 ) < 1 ↔ ( ( abs ‘ 𝐴 ) ↑ 2 ) < ( 1 ↑ 2 ) ) ) |
17 |
8 16
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) < ( 1 ↑ 2 ) ) |
18 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
19 |
17 18
|
breqtrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) < 1 ) |
20 |
7 19
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( 𝐴 ↑ 2 ) ) < 1 ) |
21 |
4 20
|
ltned |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( 𝐴 ↑ 2 ) ) ≠ 1 ) |
22 |
|
fveq2 |
⊢ ( ( 𝐴 ↑ 2 ) = - 1 → ( abs ‘ ( 𝐴 ↑ 2 ) ) = ( abs ‘ - 1 ) ) |
23 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
24 |
23
|
absnegi |
⊢ ( abs ‘ - 1 ) = ( abs ‘ 1 ) |
25 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
26 |
24 25
|
eqtri |
⊢ ( abs ‘ - 1 ) = 1 |
27 |
22 26
|
eqtrdi |
⊢ ( ( 𝐴 ↑ 2 ) = - 1 → ( abs ‘ ( 𝐴 ↑ 2 ) ) = 1 ) |
28 |
27
|
necon3i |
⊢ ( ( abs ‘ ( 𝐴 ↑ 2 ) ) ≠ 1 → ( 𝐴 ↑ 2 ) ≠ - 1 ) |
29 |
21 28
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝐴 ↑ 2 ) ≠ - 1 ) |
30 |
|
atandm3 |
⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ≠ - 1 ) ) |
31 |
1 29 30
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐴 ∈ dom arctan ) |