Description: A bounded metric space is a metric space. (Contributed by Mario Carneiro, 16-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | bndmet | ⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) → 𝑀 ∈ ( Met ‘ 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isbnd | ⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑦 ) ) ) | |
2 | 1 | simplbi | ⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) → 𝑀 ∈ ( Met ‘ 𝑋 ) ) |