Description: A bounded metric space is a metric space. (Contributed by Mario Carneiro, 16-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bndmet | ⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) → 𝑀 ∈ ( Met ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isbnd | ⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑦 ) ) ) | |
| 2 | 1 | simplbi | ⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) → 𝑀 ∈ ( Met ‘ 𝑋 ) ) |