Metamath Proof Explorer


Theorem bndmet

Description: A bounded metric space is a metric space. (Contributed by Mario Carneiro, 16-Sep-2015)

Ref Expression
Assertion bndmet ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) → 𝑀 ∈ ( Met ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 isbnd ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑥𝑋𝑦 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑦 ) ) )
2 1 simplbi ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) → 𝑀 ∈ ( Met ‘ 𝑋 ) )