| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							metres2 | 
							⊢ ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) )  ∈  ( Met ‘ 𝑆 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantlr | 
							⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) )  ∈  ( Met ‘ 𝑆 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							ssel2 | 
							⊢ ( ( 𝑆  ⊆  𝑋  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  𝑋 )  | 
						
						
							| 4 | 
							
								3
							 | 
							ancoms | 
							⊢ ( ( 𝑥  ∈  𝑆  ∧  𝑆  ⊆  𝑋 )  →  𝑥  ∈  𝑋 )  | 
						
						
							| 5 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 )  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							eqeq2d | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 )  ↔  𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							rexbidv | 
							⊢ ( 𝑦  =  𝑥  →  ( ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 )  ↔  ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							rspcva | 
							⊢ ( ( 𝑥  ∈  𝑋  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  →  ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							sylan | 
							⊢ ( ( ( 𝑥  ∈  𝑆  ∧  𝑆  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  →  ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantlll | 
							⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  →  ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							dfss | 
							⊢ ( 𝑆  ⊆  𝑋  ↔  𝑆  =  ( 𝑆  ∩  𝑋 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							biimpi | 
							⊢ ( 𝑆  ⊆  𝑋  →  𝑆  =  ( 𝑆  ∩  𝑋 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							incom | 
							⊢ ( 𝑆  ∩  𝑋 )  =  ( 𝑋  ∩  𝑆 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							eqtrdi | 
							⊢ ( 𝑆  ⊆  𝑋  →  𝑆  =  ( 𝑋  ∩  𝑆 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							ineq1 | 
							⊢ ( 𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  →  ( 𝑋  ∩  𝑆 )  =  ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  ∩  𝑆 ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							sylan9eq | 
							⊢ ( ( 𝑆  ⊆  𝑋  ∧  𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) )  →  𝑆  =  ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  ∩  𝑆 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantll | 
							⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) )  →  𝑆  =  ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  ∩  𝑆 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantlr | 
							⊢ ( ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) )  →  𝑆  =  ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  ∩  𝑆 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) )  =  ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							blssp | 
							⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑟  ∈  ℝ+ ) )  →  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 )  =  ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  ∩  𝑆 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							an4s | 
							⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  ( 𝑆  ⊆  𝑋  ∧  𝑟  ∈  ℝ+ ) )  →  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 )  =  ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  ∩  𝑆 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							anassrs | 
							⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑟  ∈  ℝ+ )  →  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 )  =  ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  ∩  𝑆 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantr | 
							⊢ ( ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) )  →  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 )  =  ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  ∩  𝑆 ) )  | 
						
						
							| 24 | 
							
								18 23
							 | 
							eqtr4d | 
							⊢ ( ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) )  →  𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ex | 
							⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑟  ∈  ℝ+ )  →  ( 𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  →  𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							reximdva | 
							⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  →  ( ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  →  ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							imp | 
							⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  ∧  ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) )  →  ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) )  | 
						
						
							| 28 | 
							
								10 27
							 | 
							syldan | 
							⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  →  ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							an32s | 
							⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  ∧  𝑆  ⊆  𝑋 )  →  ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							ex | 
							⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  →  ( 𝑆  ⊆  𝑋  →  ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							an32s | 
							⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑆  ⊆  𝑋  →  ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							imp | 
							⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  →  ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							an32s | 
							⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑥  ∈  𝑆 )  →  ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							ralrimiva | 
							⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  ∧  𝑆  ⊆  𝑋 )  →  ∀ 𝑥  ∈  𝑆 ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) )  | 
						
						
							| 35 | 
							
								2 34
							 | 
							jca | 
							⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  ∧  𝑆  ⊆  𝑋 )  →  ( ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) )  ∈  ( Met ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							isbnd | 
							⊢ ( 𝑀  ∈  ( Bnd ‘ 𝑋 )  ↔  ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							anbi1i | 
							⊢ ( ( 𝑀  ∈  ( Bnd ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ↔  ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  ∧  𝑆  ⊆  𝑋 ) )  | 
						
						
							| 38 | 
							
								
							 | 
							isbnd | 
							⊢ ( ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) )  ∈  ( Bnd ‘ 𝑆 )  ↔  ( ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) )  ∈  ( Met ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) ) )  | 
						
						
							| 39 | 
							
								35 37 38
							 | 
							3imtr4i | 
							⊢ ( ( 𝑀  ∈  ( Bnd ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) )  ∈  ( Bnd ‘ 𝑆 ) )  |